Supplementary data

Table S1

Methanococcus maripaludis strains used in this study.

Strains	Genotype or description	Source or reference
S2	Wild-type M. maripaludis	(Whitman et al., 1986)
Mm900	S2 Δhpt	(Moore and Leigh, 2005)
FSD6	Mm900 Δsel D::pac	This study
FSD10	Mm900 $\Delta sel D$	This study
FSD102	Mm900 ΔselD Δpstk::pac	This study
FSD103	Mm900 Δsel D $\Delta spcS::pac$	This study
FHM1	Mm900 ∆hrsM::pac	This study
FHM11	Mm900 ΔhrsM::pac Δpstk::neo	This study

Table S2

Plasmids used in this study.

<u>Plasmids</u>	Description	Source or reference
		x
pCR2.ITOPO	Amp' Kan' cloning vector	Invitrogen
pCRPrtNeo	<i>hmv</i> promoter– <i>hpt</i> fusion + Neo [•] cassette in pCR2.1TOPO	(Moore and Leigh, 2005)
pIJA03	Pur ^r methanogen integration vector	(Stathopoulos et al., 2001)
pIJA03hpt	the 745 bp BgIII/XhoI fragment containing the hmv promoter–hpt fusion was excised from pCRPrtNeo and ligated into BgIII/XhoI digested pIJA03	This study
pIJA04	from pIJA03hpt the <i>pac</i> gene was removed by XbaI/SacII- digestion and religation after blunting overhangs	This study
pJK301	Amp ^R cloning vector used to construct markerless deletions in <i>Methanosarcina barkeri</i> ; contains a <i>pac–hpt</i> operon flanked by two <i>flp</i> recombinase recognition (<i>FRT</i>) sites	(Welander and Metcalf, 2008)
pJK301∆hpt	the <i>Methanosarcina acetivorans hpt</i> gene was removed from pJK301 by NdeI/MfeI-digestion and religation after blunting overhangs; the KpnI site adjacent to the <i>mcr</i>	This study
pJKM12	the <i>hmv</i> promoter– <i>hpt</i> – <i>mcr</i> terminator cassette encoded on pIJA04 was excised with XhoI/KpnI and ligated into XhoI/KpnI digested pJK301∆hpt	This study
pJKM12N	AatII-cut neo ^R PCR product (using primers 12NEOF and 12NEOR and pCRPrtNeo as template) cloned into AatII-cut pJKM12; correct orientation confirmed by sequencing; replaces Pur ^R with Neo ^R	This study
pJKM12∆selD	deletion construct of <i>selD</i> in pJKM12. PCR products using primers SELDNF-SELDNR and SELDCF-SELDCR cloned into NotI/BamHI and HindIII/XhoI sites of pJKM12	This study
pJKM12∆pstK	deletion construct of <i>pstK</i> in pJKM12. PCR products using primers PSTKNF-PSTKNR and PSTKCF-PSTKCR cloned into NotI/BamHI and HindIII/XhoI sites of pJKM12	This study
pJKM12N∆pstK	deletion construct of <i>pstK</i> in pJKM12N. PCR products using primers PSTKNF-PSTKNR and PSTKCF-PSTKCR cloned into NotI/BamHI and HindIII/XhoI sites of pJKMN12	This study
pJKM12∆hrsM	deletion construct of <i>hrsM</i> in pJKM12. PCR products using primers HRSMNF-HRSMNR and HRSMCF-HRSMCR cloned into NotI/BamHI and HindIII/XhoI sites of pJKM12	This study
pJKM12∆spcS	deletion construct of <i>spcS</i> in pJKM12. PCR products using primers SPCSNF-SPCSNR and SPCSCF-SPCSCR cloned into NotI/BamHI and HindIII/XhoI sites of pJKM12	This study
pMEV2	Neo ^r shuttle vector	(Lin and Whitman, 2004)
pECSD	PstI/XbaI-cut <i>E. coli sel</i> D PCR product (using primers ECSDF and ECSDR) cloned into NsiI/XbaI-cut pMEV2	This study
pECSA	NsiI/XbaI-cut <i>E. coli selA</i> PCR product (using primers ECSAF and ECSAR) was ligated to the <i>hpt</i> -containing XbaI/NarI restriction fragment from pCRPrtNeo; this construct was then ligated into NsiI/NarI-digested pMEV2	This study
pFLPH	<i>S. cerevisiae</i> Flp recombinase expression vector. PstI/XbaI- cut <i>flp</i> PCR product(using primers FLPF and FLPR) was ligated into NsiI/XbaI-digested pMEV2	This study

Table S3

Oligonucleotides used in this study. Added recognition sites for restriction endonucleases are underlined.

Primer	Sequence	added restriction site
FLPF	AA <u>CTGCAG</u> ATGCCACAATTTGGTATATT	PstI
FLPR	GC <u>TCTAGA</u> TTATATGCGTCTATTTATGT	XbaI
12NEOF	GGAATTC <u>GACGTC</u> ATGATTGAACAAGATGGATTGCA	AatII
12NEOR	GGAATTC <u>GACGTC</u> TCAGAAGAACTCGTC	AatII
SELDNF	ATAAGAAT <u>GCGGCCGC</u> GAGGGGCAACAGTATTTAGCG	NotI
SELDNR	CG <u>GGATCC</u> CTGGTAGAATTACATGCCGC	BamHI
SELDCF	CCC <u>AAGCTT</u> CCAGAATACAAGGATAAATTAA	HindIII
SELDCR	CCG <u>CTCGAG</u> GTTATACATGCCGACAGTAC	XhoI
PSTKNF	ATAAGAAT <u>GCGGCCGC</u> GTCTGCTCCGATTTTGACGACTTCGTTAG	NotI
PSTKNR	CG <u>GGATCC</u> CAAAGGCGCTTTGAGATATA	BamHI
PSTKCF	CCC <u>AAGCTT</u> TCTGAGAAGTTAGATTTTGA	HindIII
PSTKCR	CCG <u>CTCGAG</u> CTTGCATCCGGAGTTTCTCC	XhoI
HRSMNF	ATAAGAAT <u>GCGGCCGC</u> TCCAGAAACATCTTCTATAAACAAAC	NotI
HRSMNR	CG <u>GGATCC</u> GGGTCCATGGTATCACTATTATATACGTTTATTCTT	BamHI
HRSMCF	CCC <u>AAGCTT</u> AGGGTAAAAAACCAAGAAACC	HindIII
HRSMCR	CCG <u>CTCGAG</u> AATTACTTGATGAAACATCA	XhoI
SPCSNF	ATAAGAAT <u>GCGGCCGC</u> ATTATCTCGAATAAGTTCTC	NotI
SPCSNR	CG <u>GGATCC</u> CCTTCAATATTAAAATCGAGCATTATATCACG	BamHI
SPCSCF	CCC <u>AAGCTT</u> TGGAAACTGTTATTTGGGAACTTATACC	HindIII
SPCSCR	CCG <u>CTCGAG</u> AATTTTAATTGTACTACCAT	XhoI
YBBBNF	ATAAGAAT <u>GCGGCCGC</u> CCCCTACCTGTAACGTATGC	NotI
YBBBNR	CG <u>GGATCC</u> CACCAGAGATACAGTAGTAAAA	BamHI
YBBBCF	CCC <u>AAGCTT</u> GGATTTAAAGTAAAAAGACTTGTAGGTG	HindIII
YBBBCR	CCG <u>CTCGAG</u> CCAAATGTTGGAAAATCAAC	XhoI
ECSDF	AA <u>CTGCAG</u> ATGAGCGAGAACTCGATTCGTTTGACCC	PstI
ECSDR	GC <u>TCTAGA</u> TTAACGAATCTCAACCATGG	XbaI
ECSAF	CCA <u>ATGCAT</u> ATGACAACCGAAACGCGTTCCCTCTAT	NsiI
ECSAR	GC <u>TCTAGA</u> GTCATTTCAACAACATCTCCA	XbaI
FRCA-F	AAGACACGAAGGGCATACCAAACTT	
FRCA-R	GGCAAATTCCACAGAATCTCGAAA	
VHCD-F	GTAGTGGCAATCTCCAAGGTGGC	
VHCD-R	GGTGCAGATACAGCAGGAGTTGGTA	
VHU-F	ATGTTACCAGTGAGGATACGGTGCA	
VHU-R	TGCAACGAATACAGCATCAGCG	

Figure S1

Generation of marked and markerless deletion mutants of *selD* (MMP0904) in *M. maripaludis* Mm900. (A) Disruption of the gene encoding SelD in *M. maripaludis* Mm900 by the *FRT-pac-FRT* cassette as a result of two homologous recombinations upon transformation with suicide plasmid pJKM12 Δ selD gave rise to six clones (named FSD1-FSD6). From the FSD6 strain the *pac*-cassette was removed by *flp*-recombinase mediated recombination to yield strain FDS10. (B) Replacement of wild-type *selD* in strain Mm900 (lane 7) with the *FRT-pac-FRT* cassette was confirmed by Southern hybridization. Lanes 1-6: FSD1-FSD6. Genomic DNAs were digested with ClaI and MscI and hybridized with a DIG-labeled probe complementary to a 640bp fragment overlapping the upstream flanking region and first 230 bp of MMP0904. (C) Southern hybridization confirming the markerless deletion of *selD* in strain FSD10. Genomic DNA of strains Mm900 (lane 1), FSD6 (lane 2) and FSD10 (lane 3) was digested with ClaI and MscI and hybridized with the same probe as in (B).

Figure S2

Generation of a marked deletion mutant of *pstK* (MMP1490) in *M. maripaludis* strain FSD10. (A) The gene encoding PSTK in the *M. maripaludis* FSD10 strain was disrupted by the *FRT-pac-FRT* cassette as a result of two homologous recombinations upon transformation with suicide plasmid pJKM12 Δ pstK. After verification of the genotype, one randomly selected *pstK* mutant was designated FSD102. (B) Disruption of *pstK* was confirmed by Southern hybridization. Genomic DNA of 3 randomly selected puromycin resistant clones (lane 1-3) and of FSD10 (lane 4) was digested with PacI and NsiI and hybridized with a DIG-labeled probe complementary to a 530 bp fragment overlapping the last70 bp of MMP1490 and the adjacent downstream flanking region.

Figure S3

Generation of a marked deletion mutant of *spcS* (MMP0595) in *M. maripaludis* strain FSD10. (A) The gene encoding SepSecS in the *M. maripaludis* FSD10 strain was disrupted by the *FRT-pac-FRT* cassette as a result of two homologous recombinations upon transformation with suicide plasmid pJKM12 Δ spcS. After verification of the genotype, one randomly selected *spcS* mutant was designated FSD103. (B) Disruption of *spcS* was confirmed by Southern hybridization. Genomic DNA of FSD103 (lane 1) and of FSD10 (lane 2) was digested with BamHI and hybridized with a DIG-labeled probe complementary to a 480 bp fragment overlapping the upstream flanking region and first 23 bp of MMP0595.

Figure S4

Generation of a marked deletion mutant of *pstK* (MMP1490) in *M. maripaludis* strain FHM1. (A) The gene encoding PSTK in the *M. maripaludis* FHM1 strain was disrupted by the *FRT-neo-FRT* cassette as a result of two homologous recombinations upon transformation with suicide plasmid pJKM12N Δ pstK. After verification of the genotype, one randomly selected *pstK* mutant was designated FHM11. (B) Disruption of *pstK* was confirmed by Southern hybridization. Genomic DNA of FHM11 (lane 1) and of FHM1 (lane 2) was digested with HindIII and hybridized with a DIG-labeled probe complementary to a 530 bp fragment overlapping the upstream flanking region and first 320 bp of MMP1490.

Figure S1

Figure S2

Figure S3

Figure S4

References

- Lin, W., and Whitman, W.B. (2004) The importance of porE and porF in the anabolic pyruvate oxidoreductase of Methanococcus maripaludis. *Archives of Microbiology* **181**: 68-73.
- Moore, B.C., and Leigh, J.A. (2005) Markerless mutagenesis in *Methanococcus maripaludis* demonstrates roles for alanine dehydrogenase, alanine racemase, and alanine permease. *J Bacteriol* **187**: 972-979.
- Stathopoulos, C., Kim, W., Li, T., Anderson, I., Deutsch, B., Palioura, S. et al. (2001) CysteinyltRNA synthetase is not essential for viability of the archaeon *Methanococcus maripaludis*. *Proc Natl Acad Sci U S A* 98: 14292-14297.
- Welander, P.V., and Metcalf, W.W. (2008) Mutagenesis of the C1 oxidation pathway in *Methanosarcina barkeri*: new insights into the Mtr/Mer bypass pathway. J Bacteriol 190: 1928-1936.
- Whitman, W.B., Shieh, J., Sohn, S., Caras, D.S., and Premachandran, U. (1986) Isolation and Characterization of 22 Mesophilic Methanococci. *Systematic and Applied Microbiology* 7: 235-240.