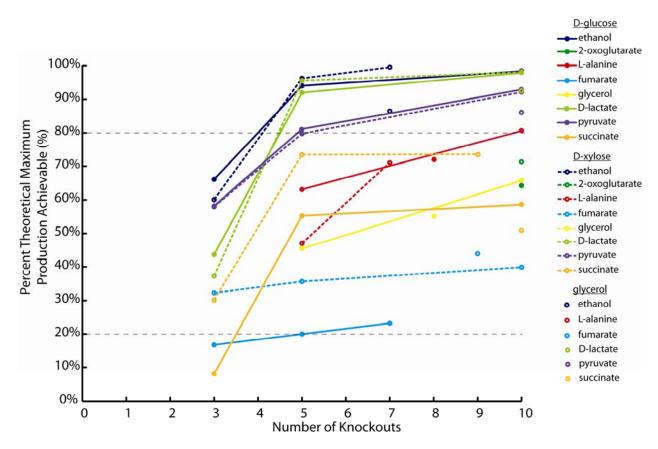

Supplementary Text


List of Supplementary Data Files

File 1: All of the designs identified in the OptKnock analysis.

Supplementary Figure 1: The strain designs generated for five different targets from glucose, xylose, and glycerol aerobically

Supplementary Figure 1: A set of graphs that give the production envelopes for different substrate / target pairs that were calculated during the analysis under anaerobic conditions. The different target production rates (mmol $gDW^{-1} hr^{-1}$) are shown on the y-axis and the growth rate (hr⁻¹) is given on the x-axis. Shown on each plot (if a solution exists) are the maximum yields for 3 knockouts (yellow, solid line), 5 knockouts (green, solid line), up to 10 knockouts (with a 99.99% deletion penalty, blue, solid line), the maximum substrate-specific productivity (SSP, pink, dashed line), and the maximum strength of growth coupling (SOC, orange, dashed line) design. For example, there are no valid solutions for 2-oxoglutarate production on glycerol given the minimum growth rate of 0.1 hr⁻¹. Some of the solutions are identical for multiple objectives.

Supplementary Figure 2: Theoretical maximum production achievable for different substrate / target pairs for under aerobic conditions

Supplementary Table 1: Changes from iAF1260 to make iAF1260b

Reaction	Reason for addition
added	
(abbreviation)	
DHORTfum	Added to no longer
	make FRD essential
MALt3pp	Means of excretion
ALAt2rpp	Means of excretion
GLYt2rpp	Means of excretion
CITt3pp	Means of excretion
ASPt2rpp	Means of excretion

	Substrate	Glucose	Xylose	Glycerol	Glucose	Xylose	Glycerol
	Aerobicity	Anaerobic	Anaerobic	Anaerobic	Aerobic	Aerobic	Aerobic
product	no. of carbons	molar yield					
Ethanol	2	193%	159%	98%	193%	159%	108%
D-Lactate	3	193%	159%	13%	193%	159%	101%
Glycerol	3	73%	45%		148%	121%	
L-Alanine	3	193%	127%	13%	193%	157%	99%
L-Serine	3	81%	50%	5%	198%	163%	102%
Pyruvate	3	147%	104%	7%	208%	171%	106%
Fumarate	4	86%	52%	4%	174%	142%	94%
L-Malate	4	86%	52%	4%	174%	142%	94%
Succinate	4	144%	105%	10%	161%	131%	88%
2-Oxoglutarate	5	50%	34%	2%	122%	100%	64%
L-Glutamate	5	55%	37%	2%	113%	93%	61%

Supplemental Table 2: Theoretical Yields - Molar Yields

Supplementary Table 3: Substrate conditions

Carbon Substrate(s)	Aerobicity	Wild Type Growth Rate	Target Reactions After Reduction of Scope
Glucose	Anaerobic	0.4589	142
Xylose	Anaerobic	0.3194	141
Glycerol	Anaerobic	0.1192	140
Glucose	Aerobic	1.2759	170
Xylose	Aerobic	1.1305	165
Glycerol	Aerobic	0.9828	166
Glucose / Acetate	Anaerobic	0.4589	142
Glucose / Acetate	Aerobic	1.2759	170
Glucose / AAs	Anaerobic	1.0313	162
Glucose / AAs	Aerobic	2.0996	189

Maximum uptake rates for primary carbon sources and acetate were set to 20 mmol/gDW⁻¹ hr⁻¹. Maximum amino acid (AA) uptake rates were set to 5 mmol/gDW⁻¹ hr⁻¹. In aerobic simulations, maximum oxygen uptake rate was set to 20 mmol/gDW⁻¹ hr⁻¹.

Methods

Description of OptGene procedure

OptGene was implemented as previously described [ref], with the following modifications, i) the genotype of the population was changed from genes to reactions. This was done to reduce the number of total targets needed as the number of gene associated with the set of target reactions was larger than the number of reactions (effectively decreasing search time) and to make optGene input have the same format as optKnock, ii.) the mutation function was modified as described below, iii.) some parameters were modified as described below, this was performed in a conservative fashion to increase the chance of finding an optimal solution, and iv) solutions from OptKnock which had a positive production were used as an initial population for OptGene simulation, in order to increase the efficiency of the algorithm by inputting reasonably good initial guesses for further refinement. OptGene was implemented in the Matlab software framework using the Genetic Algorithms and Directed Search toolbox.

Specific Change: Mutation Function

It was noted that having an independent mutation function where at each generation, each reaction is toggled independently with probability 1/nrxns will tend to increase the number of mutations until half the reactions are knocked out. As this is undesirable, a small modification was added where with 50% knockouts would be randomly removed until the child genome has fewer KO's than the parent. This heuristic makes the probability of increasing the number of KOs roughly equal to the probability of removing one.

Specific Change: Hashing of genotypes

A speed improvement made was the hashing of previously explored genotypes. All genotypes for which a fitness has been computed are put into a hash table (the key being a concatenation of the genotype). When a new genotype needs to be evaluated, the hash table is queried first to see if it has been previously computed. This results in a significant speedup in performance without affecting the results of the algorithm. The hashtable is periodically purged to prevent memory overflow. Note that this improvement has no effect on the outcome of the algorithm, only the speed.

Name	Value	Value in [nof]	Description	Comments	
		in [ref]			
Simulation Param					
Population size	4x125	125	Multiple populations were used.	Increasing the number	
			The total number of individuals	of individuals increases	
			was increased by a factor of 4	the chance of finding the optimum.	
MigrationDirectio	Forwar	n/a	Migration occurs between sub-		
n	d		populations. Individuals only		
			move forward from one		
			population to the next		
MigrationFraction	.1	n/a	The probability that any	$1/10^{\text{th}}$ of the population	
			individual migrates to the next	migrates.	
			population at a migration event.		
MigrationInterval	100	n/a	How often migration intervals	100 is sufficiently high	
			occur. In this case	that for the most part the	
				sub-populations are	
				independent	
MaxKO	10	varries	Maximum number of KO's		
			allowed.		
Mutation rate	1/nrxns	1/nrxns	The mutation rate indicates the	This was modified	
	*		probability that a child will	slightly to not	
			have a different genome as its	accumulate mutations	
			parent. The value 1/nrxns	(see below). We looked	
			indicates that on average there	at the distribution of	
			will be one mutation per	mutations in the	
			offspring (although there could	population and with this	
			be zero or more)	change there are more	
				individuals with fewer	
				mutations.	
Cross over	.8	1	This value represents the	20% of individuals are	
fraction			fraction of offspring which are	now generated by a	
			produced by crossing over	simple mutation process.	
			between two parents (as		
			opposed to mutations from a		
			single parent)		
Cross over	.2*mut	1/nrxns	After crossing over, there is an		
mutation rate	ation		additional probability of a		
	rate		mutation.		

Supplementary Table 4: Parameters and values

Cross over	uniform	uniform	Crossovers are performed on a	
strategy		or 1	gene by gene basis. The	
		point or	offspring of two parents has an	
		2 point	equal probability of receiving	
			any given gene from either	
			parent.	
Selection strategy	roulette	roulette	Selection for the next	
			generation is based on an	
			individual's fitness. Greater	
			fitness gives a higher	
			probability.	
Elite count	2	n/a	Number of top performing	This is to keep track of
			genotypes which automatically	the global best scores.
			to pass to the next generation.	
Terminating Conditions				
MaxGenerations	10000	5000	The maximum number of	
			generations performed.	
StallGenLimit	10000	n/a	The maximum number of	
			generations between finding an	
			improved score.	
Time Limit	2 days	n/a	The maximum time limit	This limit is not reached.
StallTimeLimit	1 day	n/a	The maximum time between	This limit is not reached.
			finding a score improvement	