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Supplementary Figure 1. Correlation between the fitness effect of a gene’s deletion and the number of 
its genetic interactions. 
The empirical genetic interaction degree of a gene negatively correlates with the empirical fitness of its 
deletion mutant for both negative (Spearman’s correlation on raw data:  = −0.47, P<10-37) and positive 
interactions ( = −0.42, P<10-28). Genetic interaction degree of a gene was defined as the fraction of 
tested genes that show significant interaction with the gene in question. Genetic interactions and fitness 
of single mutants were derived from our empirical genetic interaction map. Only null mutants of non-
essential genes were included in the analysis. 
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Supplementary Figure 2. Evaluation of computationally predicted genetic interaction scores under 
various model assumptions and under transcriptional constraints. 
 
(a) Comparing the predictive performance of FBA and MOMA algorithms. FBA assumes maximal biomass 
production (fitness), whereas MOMA assumes minimally perturbed flux distributions in mutant strains. 
The two algorithms show similar performance. 

 
 
 
 
(b) Effect of using an alternative definition of interaction scores to derive in silico genetic interactions. 
Here, we compared the standard definition of genetic interaction score (ε = f12 – f1∙f2) to a scaled measure 
that quantifies the relative strength of the interactions1. The scaling is based on two natural references. 
For negative interactions, the reference case is complete synthetic lethality. For positive interactions, the 
reference is the special case when the mutation with the stronger effect completely masks (alleviates) the 
effect of the other mutation. Apparently, scaled interaction score results in slightly reduced maximum 
precision values. 
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(c) Comparing the predictive performance of different yeast models.  iMM9042 is a more recent version 
that contains 8 compartments, while iLL6723 is an earlier reconstruction that contains only 2 
compartments. Both models were evaluated on an overlapping set of 46,814 gene pairs. While iLL672 
shows slightly higher maximum precisions, there is no difference in recalls. 

 
 
 
(d) Effect of imposing transcriptional constraints on the predictive performance of FBA. We integrated 
gene expression data into the FBA framework by inactivating those genes in the model whose expression 
is reported to be undetectable (tag count=0, Scenario 1) or very low (tag count ≤ 2, Scenario 2) according 
to a recent quantitative transcriptome map of yeast4.  
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Supplementary Figure 3. Evaluation of statistical modeling approaches to predict genetic interactions in 
yeast metabolism. 
We built classifiers to predict negative and positive genetic interactions based on a large set of gene-pair 
characteristics (see Supplementary Note) using both logistic regression and random forest5 models as 
implemented in the R statistical environment6,7. Only high-confidence genetic interactions between null 
mutants of non-essential genes were included in the analysis (325 negative and 116 positive interactions 
among 67,517 gene pairs, see Online Methods for definition). Random forest is a recently proposed non-
parametric method that uses an ensemble of classification trees created by using bootstrap samples of 
the training data and random feature selection in tree building5. Here, we employed balanced random 
forest classifiers to deal with the strong imbalance in the number of interacting and non-interacting gene 
pairs and built 5000 trees. Prediction success was evaluated using out-of-bag samples for random forest 
and 5-fold cross-validation repeated 10 times for logistic regression analyses, respectively. Precision – 
recall plots were prepared using the visualization package ROCR8. ‘FBA model’ denotes the predictive 
performance of FBA-derived genetic interaction scores, while ‘random forest + FBA’ corresponds to a 
random forest model that has been built by incorporating FBA-derived fitness and genetic interaction 
scores as predictors in addition to gene-pair characteristics listed in Supplementary Note. 
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Supplementary Figure 4. Revised reconstruction of NAD biosynthesis. 
Proposed model changes and their cumulative effects on negative genetic interaction and gene 
essentiality predictions: i) remove the de novo aspartate pathway, ii) make purine-nucleoside 
phosphorylase and nicotinamidase9 reactions irreversible, iii) change gene-reaction associations by 
assigning the same set of reactions to NMA1 and NMA2, which are isoenzymes10, iv) the  transformation 
of formylkynurenine to kynurenine is coded by BNA7, not by BNA3, based on ref.11. Altogether, these 
modifications introduce 9 correctly predicted cases of negative interactions, remove 3 incorrectly 
predicted negative interactions and introduce 1 correctly predicted conditional lethal single mutant 
phenotype. Additionally, some modifications introduced discrepancies that were resolved by other 
modifications and are therefore not shown. An updated metabolic reconstruction incorporating these 
modifications can be downloaded in Systems Biology Markup Language12 format from 
http://www.utoronto.ca/boonelab/data/szappanos/. 
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Supplementary Table 1. Monochromaticity of genetic interactions between functional annotation 
groups.  
Results of the monochromaticity analysis as described in the main text. Genes assigned to multiple 
functional annotation groups were excluded from the analysis. The degree of monochromaticity was 
measured with a monochromatic score (MC, see Methods of the main text), and a pair of functional 
groups was considered monochromatic if |MCij| > 0.5. Significance level of the observed 
monochromaticity was assessed by randomizations (see Online Methods). Because pairs of annotation 
groups that show only one genetic interaction would always be monochromatic, we restricted our 
analysis to those functional group pairs that show at least 2 and 3 genetic interactions between each 
other, respectively. 
 
 

 Functional group pairs 
showing at least 2 genetic 

interactions 

Functional group pairs 
showing at least 3 genetic 

interactions 
Total number of functional group pairs 
investigated 

451 339 

Number of monochromatic functional group 
pairs in the real data 

177 111 

Mean number and standard deviation of  
monochromatic group pairs expected based on 
randomized genetic interaction networks 

142.87 (8.70) 82.75 (7.15) 

Relative excess of monochromatic group pairs 
in the real genetic interaction network 
compared to randomized networks 

23.89% 34.13% 

Significance level of observed 
monochromaticity 

P < 10-4 P < 10-4 

Background ratio of positive to all interactions 
(bpr) 

0.341 0.337 

 
Results using the high-confidence genetic interaction dataset: 
 
 Functional group pairs 

showing at least 2 genetic 
interactions 

Total number of functional group pairs 
investigated 

17 

Number of monochromatic functional group 
pairs in the real data 

10 

Mean number and standard deviation of  
monochromatic group pairs expected based on 
randomized genetic interaction networks 

6.01 (1.83) 

Relative excess of monochromatic group pairs 
in the real genetic interaction network 
compared to randomized networks 

66.39% 

Significance level of observed 
monochromaticity 

P = 0.03 

Background ratio of positive to all interactions 
(bpr) 

0.415 
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Supplementary Table 2. Partial correlation analysis of FBA predicted genetic interaction degree, single 
mutant fitness and pleiotropy. 
We used partial correlation analyses to disentangle the effects of predicted single mutant fitness and 
pleiotropy on in silico genetic interaction degrees. To do this, we calculated Spearman’s partial rank 
correlation coefficients between a predictor and a response variable while controlling the effect of a third 
variable using the pcor.test function implemented in R (http://www.yilab.gatech.edu/pcor.html). To avoid 
spurious correlations stemming from the fact that for genes associated with silent reactions the model 
would predict i) zero fitness contribution, ii) lack of genetic interactions and iii) zero pleiotropy, we 
focused only on those genes whose removal has non-zero fitness effect. Furthermore, some sets of genes 
would always produce identical phenotypes in the model simulations and cannot be treated as 
independent data points in statistical analyses (e.g. genes encoding flux coupled reactions or subunits of 
the same protein complex). To avoid such a bias in our analysis, we represented each correlated gene set 
with one randomly chosen gene. These filtering procedures resulted in 34 genes. 
 
 

 Negative interaction degree Positive interaction degree 

 Spearman’s 
partial   

P-value Spearman’s 
partial   

P-value  

Correlation between interaction 
degree and pleiotropy while controlling 

the effect of fitness 

 
0.447 

 
0.005 

 
-0.112 

 
0.531 

Correlation between interaction 
degree and fitness while controlling the 

effect of pleiotropy 

 
0.089 

 
0.620 

 
-0.451 

 
0.005 
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Supplementary Table 3. Metabolic model modifications suggested by the automated model refinement 
method. 
List of individual, and combinations of related model modifications that were suggested by the automated 
model refinement algorithm. Few modifications clearly contradict literature data and are therefore not 
shown. While the algorithm did not evaluate positive genetic interactions during the optimization process, 
we note that none of the listed model changes decreased the prediction accuracy of positive interactions. 
 
 

Improved predictionsb Impaired predictions MCC incrementd Affected 
reaction(s) or 

biomass 
componenta 

Suggested 
modification 

Negative interaction 
Single 

mutant 
Negative 

interaction 
Single 

mutant 

Description / 
Explanation 

Frequencyc 
Negative 

interaction 
Single 

mutant 

ASPOcm, 
QULNS, 
NMNAT, 
RNMK 

Deletion 
(ASPOcm or 
QULNS) and 
(NMNAT or 

RNMK) 

9 correctly predicted 
negative interaction 

appeared (TNA1−BNA1, 
TNA1−BNA2, TNA1−BNA4, 
TNA1−BNA5, NPT1−BNA1, 
NPT1−BNA2, NPT1−BNA4,  
NPT1−BNA5, NPT1−BNA6) 

and 3 erroneously predicted 
negative interaction 

disappeared (NMA1−TNA1, 
NMA1−PNC1, NMA1−NRK1) 

1 correctly 
predicted 
essential 

phenotype 
appeared 
(QNS1) 

1 correctly 
predicted 
negative 

interaction 
disappeared 

(NMA1−NMA2) 
and 2 erroneously 

predicted 
negative 

interaction 
appeared 

(TNA1−BNA3, 
NPT1−BNA3) 

1 
erroneously 

predicted 
essential 

phenotype 
appeared 
(NMA1) 

Erroneous presence 
of an alternative de 

novo NAD 
biosynthesis in the 

model; corrupt 
gene-reaction 

association and 
reaction 

reversibility 

8 0.069842 0.000775 

ADPT, PUNP1, 
PUNP5 

Deletion of 
ADPT, 

disallowing 
reversibility of  

PUNP1 and 
PUNP5 

5 correctly predicted 
negative interaction 

appeared (HPT1−ADE1, 
HPT1−ADE2, HPT1−ADE4, 

HPT1−ADE5,7, HPT1−ADE6) 

- 

1 erroneously 
predicted 
negative 

interaction 
appeared 

(ADE6−AAH1) 

- 

Alternative 
pathways for the 
biosynthesis of 

AMPe 

1 0.040612 0 

ASPOcm, 
QULNS 

Deletion 

4 correctly predicted 
negative interaction 

appeared (TNA1−BNA4, 
TNA1−BNA1, TNA1−BNA2, 

TNA1−BNA5) 

- 

1 erroneously 
predicted 
negative 

interaction 
appeared 

(TNA1−BNA3) 

- 

Erroneous presence 
of an alternative de 

novo NAD 
biosynthesis in the 

model 

8 0.032538 0 

Glycogen 
Omission 

from biomass 

2 erroneously predicted 
negative interaction 

disappeared (GSY1−GSY2, 
GLG1−GLG2) 

- - - 

Dispensable 
biomass 

component 
(glycogen not 
essential for 

growth) 

8 0.006114 0 

ACALDtm 
Disallowing 
reversibility 

1 correctly predicted 
negative interaction 

appeared (ALD6−PDB1) 
- 

2 erroneously 
predicted 
negative 

interaction 
appeared 

(ALD6−ACH1, 
ALD6−PDX1) 

- 

Alternative 
pathway for 

acetate 
biosynthesise 

5 0.003958 0 

Ubiquinone-6 
Omission 

from biomass 

1 erroneously predicted 
negative interaction 

disappeared (ARO3−ARO4) 

5 correctly 
predicted 

non-
essential 

phenotype 
appeared 
(COQ2, 
COQ3, 
COQ5, 
COQ6, 
PPA2) 

- - 

Dispensable 
biomass 

component 
(ubiquinone-6 is 

essential only when 
yeast grows on 

non-fermentable 
carbon sources) 

4 0.002937 0.032093 

 
a Reaction abbreviations: ASPOcm, aspartate oxidase; QULNS, quinolinate synthase; NMNAT, nicotinamide-nucleotide 
adenylyltransferase; RNMK, ribosylnicotinamide kinase; ADPT, adenine phosphoribosyltransferase; PUNP1, purine-
nucleoside phosphorylase (Adenosine); PUNP5, purine-nucleoside phosphorylase (Inosine); ACALDtm, acetaldehyde 
mitochondrial diffusion. 
b Gene pairs or genes whose genetic interactions or single mutant fitness are affected by the suggested 
modification(s) are listed in parentheses. 
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c The number of times the modification appeared in the best hypothesis set out of 8 replicate runs (i.e. a frequency of 
8 indicates that the modification was present in all best sets). 
d MCC increment measures the impact of the suggested modification(s) on genetic interaction and single mutant 
phenotype prediction success. It is defined as the difference between the Matthews Correlation Coefficients of the 
original and the modified model. The MCC values of the original model on genetic interaction and single mutant 
phenotype predictions are 0.110720 and 0.498761, respectively. 
e The mechanism suggested by the model is open to alternative explanations based on literature data and therefore 
no specific explanation is proposed here. 
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Supplementary Note 
 
 
 
Definition of in silico growth medium  
 
Medium composition for the flux balance analysis simulations was defined so as to faithfully 
mimic experimental conditions under which genetic interactions were screened (i.e. a synthetic 
complete media lacking histidine, arginine and lysine, SD/MSD – His/Arg/Lys, see ref. 13). Upper 
bounds on nutrient uptake fluxes were defined following ref. 14 and are given in parentheses in 
mmol/hour/gram dry weight. Nutrients included were as follows: 4-Aminobenzoate (0.000002), 
Adenine (3.01), L-Alanine (0.36), L-Asparagine (0.36), L-Aspartate (0.36), Biotin (0.00000142), L-
Cysteine (0.36), Fe2+ (1000), D-Glucose (22.6), L-Glutamine (0.36), L-Glutamate (3.6), Glycine 
(0.36), L-Isoleucine (0.36), myo-Inositol (0.11), K+ (4.44), L-Leucine (1.8), L-Methionine (0.36), 
Na+ (0.75), Nicotinate (0.000002), O2 (6.3), L-Phenylalanine (0.36), Phosphate (0.89), (R)-
Pantothenate (0.0002), L-Proline (0.36), Riboflavin (0.00092), L-Serine (0.36), Sulfate (100), 
Thiamin (0.0032), L-Threonine (0.36), L-Tryptophan (0.36), L-Tyrosine (0.36), Uracil (3.63), L-
Valine (0.36) 
 
 
 
 
Description of gene-pair features employed for probabilistic prediction of genetic 
interactions. 
 
Gene-pair characteristics were compiled following earlier studies15,16, however, features 
incorporating information on genetic interactions were not included. Pair-wise features that are 
characteristic of the metabolic network reconstruction (e.g. metabolic annotation groups) were 
included. Besides simple pair-wise features, we also included so-called “2hop” features. Each 
2hop feature captures a specific relationship between a gene pair and a third gene. For instance, 
if protein A shows physical interaction with protein C, and gene C has a common upstream 
regulator with gene B then the gene pair A−B is considered as a “2hop PPI – Regulator”. 

Gene-pair features investigated were as follows: single deletant fitness (average and 
absolute difference of the two single deletion fitnesses), paralogy (with 3 levels: no sequence 
similarity, paralogs with gene family size of 2, paralogs with gene family size of >2), shortest 
path in the metabolic network, sharing a metabolic annotation group2, occurrence in a specific 
metabolic annotation group2 (30 features defined corresponding to 30 annotation groups with 
at least four genes from our genetic interaction dataset), local sub-graphs in the metabolic 
network (5 levels defined based on ref. 17: non-adjacent, chains, forks, OR funnel, AND funnel), 
flux coupling (3 levels: uncoupled, directionally or fully coupled), co-occurrence in any manually 
curated protein complex19, occurrence in a specific manually curated protein complex (5 
features defined based on 5 protein complexes with at least four genes from our genetic 
interaction dataset), any physical interaction according to BioGrid20, PPI network degree20 
(average degree and absolute difference between degrees), shortest path in the PPI network20, 
mutual clustering coefficient in the PPI network20, sharing an upstream regulator22, 2hop PPI – 
PPI, 2hop PPI – Regulator, 2hop PPI – Paralogy, 2hop Regulator – Paralogy, mRNA expression 
correlation23, sharing a MIPS phenotype24, association with a specific MIPS phenotype24 (14 
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features corresponding to 14 MIPS phenotypes with at least four genes from our genetic 
interaction dataset), quantitative phenotype correlation25, sharing subcellular localization 
(based on GO slim)26,27 and occurrence in a specific subcellular compartment26,27 (13 features 
corresponding to 13 compartments with at least four genes from our genetic interaction 
dataset). 
 
 
 
Automated model refinement 
 
We introduce a machine-learning method to automatically generate hypotheses that improve 
prediction of compensating (negative) interactions between genes. The method is based on a 
genetic algorithm to improve the fit between empirical data and genetic interaction predictions. 
Genetic algorithms comprise a heuristic search method inspired by the theory of natural 
selection to find solutions to optimization problems by evolving a population of candidate 
solutions (“individuals”) toward better solutions28. Similar algorithms have been successfully 
applied in metabolic engineering to identify in silico gene deletions that maximize the 
production of a desired metabolite29. Our implementation of the algorithm starts with a 
population of randomly modified (“mutated”) models, evaluates the performance (“fitness”) of 
each model in the population and selects those with high prediction accuracy to form a new 
population. Because evaluating each model is computationally intensive (i.e. a large number of 
gene deletions should be simulated for each individual model), we employed a two-step 
procedure to make use of all available phenotypic data while maintaining computational 
feasibility. In the first step, we searched for models by evaluating a model on only those gene 
pairs that display either in vivo interaction or in silico interaction according to the original 
iMM904 model2. Because genetic interactions are very rare both in vivo and in silico, most gene 
pairs examined in this study show no interaction and omitting them significantly speeds up the 
exploration of the hypothesis space. In the second step, we defined a new, very restricted 
hypothesis space based on the most successful models from the first step, but selected for 
models that improve overall prediction accuracy as assessed by a comprehensive evaluation of 
each model in the population (i.e. the genetic algorithm maximized a combined measure of 
prediction success that takes into account true and false positives and negatives of all genetic 
interaction and single mutant viability predictions). We present details of the method below. 
 
 
Metabolic model evaluation 
To evaluate the performance of each model (in both the first and second steps), we first 
computed in silico genetic interaction scores (ε) using flux balance analysis, converted them into 
binary values (interaction / no interaction) and compared them to experimental data. We 
focused on strong negative genetic interaction predictions only and applied a threshold of ε < -
0.5 to define in silico interacting pairs as the original model showed sufficiently high precision at 
this cutoff. The performance of genetic interaction classification was assessed by comparing 
predictions to our high-confidence genetic interaction dataset. The number of true and false 
positive and negative predictions for the original iMM904 model is presented below. 
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  Predicted interaction 

  Negative interaction No interaction 

Negative 
interaction 

True Positive (TP) 
9 

False Negative (FN) 
316 

Empirical 
interaction 

No 
interaction 

False Positive (FP) 
11 

True Negative (TN) 
67,181 

 
 
In the first round of genetic algorithm optimization, we evaluated each model on a small set of 
gene pairs that were either interacting in vivo or showed in silico interactions according to the 
original model. Model changes that either increased the number of true positives or decreased 
the number of false positives were preferred by the optimization algorithm. The performance of 
each model was defined by the following fitness function: 

 
Fstep1 = TP – FP 

 
In the second round of optimization, each model in the population was evaluated using all 
available phenotype measurements. We employed a combined measure of prediction accuracy 
that takes into account both true and false positives and negatives in a balanced manner (MCC 
score, Matthews correlation coefficient, see ref. 30). Our overall prediction accuracy score was 
derived by averaging the MCC score of genetic interaction predictions (based on 67,517 gene 
pairs) and the MCC score of single mutant viability predictions (566 single gene deletion 
phenotypes on YPD medium) resulting in the following fitness function: 

 
Fstep2 = [(MCCinteractions + MCCsingle_mutants) / 2] − π 

 
where MCCinteractions and MCCsingle_mutants denote the Matthews correlation coefficient of the 
model predictions on the genetic interaction and single deletion phenotype datasets, 
respectively, and π is a penalty (see below). 
 
  
Model representation 
Two types of metabolic network parameters were allowed to change during the optimization 
following a related protocol by Kumar & Maranas31. First, we altered the list of biomass 
compounds that are required for in silico growth. As a number of compounds are undoubtedly 
required for growth (e.g., amino acids), we only modified the presence of those biomass 
components that show variation among different versions of the yeast FBA model (i.e., present 
in some, but not all of four published models; iFF70832, iND75033, iLL6723, iMM9042). The list of 
these 21 modifiable biomass components is presented below.  
 
 

List of modifiable biomass compounds 

Ergosterol 

Glycogen 
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Trehalose 

cAMP 

Chitin 

Coenzyme A 

Flavin adenine dinucleotide 

Reduced glutathione 

Protoheme 

Mannose-(inositol-P)2-ceramide, ceramide-1 (24C), yeast-specific 

Mannose-(inositol-P)2-ceramide, ceramide-1 (26C), yeast-specific 

Mannose-(inositol-P)2-ceramide, ceramide-2 (24C), yeast-specific 

Mannose-(inositol-P)2-ceramide, ceramide-2 (26C), yeast-specific 

Mannose-(inositol-P)2-ceramide, ceramide-3 (24C), yeast-specific 

Mannose-(inositol-P)2-ceramide, ceramide-3 (26C), yeast-specific 

Nicotinamide adenine dinucleotide 

Riboflavin 

5,6,7,8-Tetrahydrofolate 

Thiamin triphosphate 

Ubiquinone-6 

Sulfate 

 
 
Second, we allowed changing reaction reversibility (e.g. reversible to irreversible) and deletion 
of reactions. Addition of reactions was not considered here because the model typically misses 
in vivo negative interactions due to over-prediction of double-mutant fitness, an issue that 
cannot be remedied by increasing the size, and potentially the redundancy, of the metabolic 
network. 

Reactions essential in silico, reactions belonging to experimentally identified essential 
genes14,34 and blocked reactions18 were not modified during the optimization process. 
Furthermore, to reduce computational cost, we represented fully coupled reaction sets18 as a 
single reaction in the parameter space, resulting in 454 modifiable reactions. Because reversible 
reactions could be set to irreversible in either direction, changes to these reactions were 
represented by two binary parameters. Overall, the hypothesis space consisted of 21 binary 
parameters representing biomass modifications and 615 binary parameters representing 
reaction deletions and reversibility changes.  
 
 
Details of the genetic algorithm 
Our algorithm evolves a population of individuals, with each individual represented by an array 
of binary parameters and each parameter encoding a certain modification of the original 
metabolic model as described above. State 1 of a parameter means the modification is applied, 
while state 0 means the original model is not affected by this parameter. Individuals of the 
starting population were generated by setting the majority of binary parameters to 0 and the 
remaining few parameters to 1. We first determined the number of these parameters by 
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drawing a random number from a Poisson distribution with λ = 1 for each individual. The drawn 
number was increased by one to ensure that we have at least one parameter with value 1. We 
then selected this number of parameters at random and set these to 1, and set the rest to 0. A 
fitness value was calculated for each individual in each generation by evaluating the encoded 
modified model on experimental data as described above. Individuals of the next generation 
were created by applying one of the following operators: elitism, crossing-over, mutation, 
insertion and deletion. First, individuals with the highest fitness were transferred unaltered to 
the next generation (elitism). Second, a mating pool was defined in each generation by selecting 
half of the individuals based on their fitness values. For each individual, the probability of being 
involved in the mating pool was calculated using a linear ranking procedure35. Next, we applied 
operators on randomly selected parents from the mating pool to create the individuals in the 
next generation. Each new individual is created using exactly one of these operators. Details of 
the operators were as follows: 
 
Crossing-over: two parents were selected and for each binary parameter one of the parental 
states was inherited by the offspring (with 50% – 50% probability).  
 
Mutation: two different parameters, one in state 1 and the other in state 0, were randomly 
selected in the parent and their values were exchanged (i.e., the total number of 1s and 0s 
remained unchanged). 
 
Insertion and deletion: the number of parameters in state 1 is increased or decreased, by 
randomly switching a small number of parameters to the opposite state. 
 
The first round of optimization involved 1000 generations of reproduction with a population size 
of 100 individuals. Preliminary simulations suggested that a fixed number of 1000 generations is 
sufficient to reach convergence. The proportions of the individuals created using the operators 
elitism, crossing-over, mutation, insertion and deletion were 5%, 45%, 40%, 5% and 5%, 
respectively. At the end of the simulations, a set of candidate modifications was identified by 
selecting the most frequent modifications (that is, parameters with value 1, observed in more 
models than the average number a parameter is observed in a model) in the set of individuals of 
the highest fitness (including those individuals that were present in earlier generations and 
attained the same fitness value).  

These candidate model modifications defined the hypothesis space of the second round 
of optimization, where a population of 50 individuals was evolved during 20 generations and the 
fitness of each modified model was evaluated using all available phenotypic data. This resulted 
in a substantially reduced hypothesis space to explore, with typically less than 50 binary 
parameters. Notwithstanding the reduced hypothesis space, the second round of optimization 
still has a heavy computational demand due to the comprehensive evaluation of each model in 
the population. Therefore, we opted to terminate the genetic algorithm after a fixed number of 
generations. Our preliminary simulations showed that 20 generations were sufficient to reach 
convergence. 

Individuals of the initial population of the second round of optimization were generated 
randomly (i.e. the state of each parameter was set to 0 or 1 with 50% - 50% probability). In 
order to minimize the occurrence of neutral modifications in the solutions, we introduced a 
penalty based on the number of parameters that are in state 1 as follows:  

 
π = 10-7 (number of parameters in state 1) / (number of parameters) 
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The penalty parameter was chosen in such a way that it could not overwhelm any beneficial 
effect gained by adding a new modification to the model. Thus, among equally fit individuals, 
those encoding fewer model modifications were preferred during selection. Besides, we applied 
an elevated deletion rate by changing the application rates of the operators to 5%, 32.5%, 
0.27.5%, 5% and 30% for elitism, crossing-over, mutation, insertion and deletion, respectively. 

At the end of the second round of optimization we simplified the best solutions by 
removing neutral modifications. The effect of each model modification on overall prediction 
accuracy was examined in two ways. First, we introduced one modification at a time to measure 
the impact of a single modification in isolation. Second, all but one modifications were applied 
simultaneously thereby interrogating the essentiality of each suggested model modifications in 
the presence of others. Modifications that failed to affect prediction accuracy based on either of 
these two criteria were excluded from the final set. 
 
We repeated the whole two-round optimization procedure 8 times and found high overlap 
between the best solutions of replicate runs. The list of recurring model modifications, their 
effects on prediction accuracy and their possible interpretations are summarized in 
Supplementary Table 3.  
 
 
Cross-validation of the model refinement procedure 
We performed cross-validation studies to investigate whether our automated procedure for 
refining the metabolic model improves the prediction of unseen genetic interactions (i.e. those 
not used for model refinement). To do this, we performed a series of 2-fold cross validations as 
follows: 
 

1. We randomly partitioned both the genetic interaction and the single-mutant 
viability data into two sub-samples of equal size. The partitioning was carried out in 
a stratified manner, i.e. each sub-sample contained the same proportion of 
significantly interacting gene pairs and essential genes for the genetic interaction 
and single-mutant viability datasets, respectively. 

2. We ran our two-step genetic algorithm on one partition of the data (training set). 
3. We evaluated the optimized model(s) obtained from step 2 using the other partition 

of the data (test set). If multiple, equivalently performing models have been 
identified in step 2, then each of them was evaluated on the test set and their 
average performance was recorded. In addition, the original unmodified model was 
also evaluated on the test set. 

4. We swapped the training and the test partitions and repeated steps 2 and 3. 
5. Steps 1-4 were repeated five times. 

 
The above procedure resulted in 10 independent estimates of the genetic interaction prediction 
accuracies (MCCinteractions) of both the original and the optimized models. A pair-wise comparison 
of prediction accuracies before and after applying the model refinement algorithm reveals that 
our method significantly improves the metabolic model, with the MCCinteractions score being 
increased in all 10 cases (P < 0.002, Wilcoxon signed-rank test). Furthermore, the method also 
significantly improves the recall of genetic interaction predictions, by ~87% on average (as 
evaluated at an in silico genetic interaction score threshold of -0.9, corresponding to a precision 
of 0.5 for the original model). 
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Bioinformatic search for homologs of aspartate oxidase and quinolinate synthase in the yeast 
genome 
 
Enzymes aspartate oxidase (EC 1.4.3.16) and quinolinate synthase (EC 2.5.1.72) form the 
aspartate de novo NAD pathway in E. coli36. Although the biochemical reactions catalyzed by 
these enzymes have been included in the iMM9042 yeast metabolic network reconstruction, 
there are no ORFs assigned to them. To investigate whether these enzyme encoding genes are 
genuinely missing from the yeast genome we applied iterative PSI-BLAST searches37. PSI-BLAST 
iteratively builds position-specific score matrices (PSSM) from multiple alignments of the highest 
scoring hits from the previous BLAST search and is able to detect even weak relationships 
between sequences. We used the E. coli enzyme encoding genes nadA (quinolinate synthase) 
and nadB (L-aspartate oxidase) as queries for the initial BLASTP search with an E-value threshold 
of 10 (default) and the number of iteration was set to 20. We used three different strategies to 
search for homologues in the yeast genome. In the first strategy, we only included protein 
sequences from S. cerevisiae in all iterations. In the second strategy, protein sequences from all 
organisms were included during the search and yeast proteins were selected from the final list 
of hits. In the third strategy, the search was started with protein sequences from all organisms 
and the position-specific scoring matrix was saved after the first iteration. Next, another PSI-
BLAST was performed with the PSSM as a query sequence profile and the search was restricted 
to S. cerevisiae sequences.  

Our approaches failed to find any potential yeast homologue when using NadA protein 
as a query. Protein NadB shares the overall folding topology with other oxidoreductases38 
(succinate dehydrogenase and fumarate reductase)  and therefore might show homology with 
yeast orthologs of these latter enzymes. We report that the most significant S. cerevisiae hits of 
the NadB query gene were annotated with succinate dehydrogenase and fumarate oxidase 
functions (e.g. SDH1, OSM1, FRD1, etc.). In addition, we detected two genes (CIR2 and HER1) 
showing very low sequence similarities to NadB (E>0.1) that have unknown molecular functions. 
Given that our PSI-BLAST approaches easily retrieved yeast genes encoding oxidoreductases 
related to L-aspartate oxidase, but not L-aspartate oxidase itself, we conclude that there is no 
evidence for the presence of an L-aspartate oxidase gene in the yeast genome. 
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