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Supplemental Results 

Alternative Filter Networks 

The biological implementation we describe in the main body of the paper is not the only way that the dynamics 

required for filtering can be generated.  Here we illustrate two alternative filter networks which achieve the 

same functionality based on the same dynamical principles but with different biological implementation. 

At the algorithmic level (Marr and Poggio, 1976), the filtering network encodes the amplitude of firing rate 

oscillation in its input afferents at a given frequency, into the firing rate of its output afferents. At the 

mechanistic level, asynchronous input is canceled by feed-forward inhibition, but oscillatory input induces large 

amplitude phase delayed oscillations in the inhibitory firing rate due to a strong resonance in the interneuron 

population at a lower frequency than that of the input oscillation.  This disinhibits the principal cells at the phase 

when excitation is strong, allowing them to fire.    

In the original filter network the low frequency resonance in the inhibitory population was generated by slow 

recurrent synapses among the interneurons.   However, the inhibition received by principal cells must decay 

quickly to produce periods of dis-inhibition in response to oscillating inputs.   This necessitated faster kinetics at 

the interneuron-principal cell synapses than at interneuron-interneuron synapses.  This slower inhibition onto 

interneurons relative to excitatory cells is atypical of many interneuron populations (Jonas et al., 2004), 

prompting us to explore whether other biological mechanisms could produce the required resonance in the 

interneuron population. 

Before discussing these alternative filtering networks, we note that late spiking interneurons of cortical layer 1 

exhibit considerably slower kinetics at their recurrent synapses than at their synapses onto pyramidal cells (Chu 

et al., 2003).  These interneurons are ideally located to control integration of activity in the long-range 

collaterals of layer 1.  The slow synaptic kinetics of these interneurons suggests that if they are acting as a 

filtering network, the pass-band would be situated in the alpha or beta frequency range. The anatomical location 

and synaptic properties of these cells, in combination with in vivo data implicating low frequency oscillations in 

tasks involving long-range interactions, make these cells a promising candidate implementation of the described 

filtering network. 
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In the first alternative version of the filtering network (Figure S1C), low frequency resonance in the interneuron 

population was induced by a combination of spike after-hyperpolarisation and gap junction connections 

between interneurons.   In this mechanism, the gap junctions promoted synchronization of the interneuron 

population at a frequency that was determined by the AHP time-course.  The filtering performance of the 

network was very similar to that of the original filtering network (Figure S1B2, C2).  We expect that resonance 

can be conferred on neuronal population responses by other features contributing to intrinsic cellular dynamics 

such as sub-threshold voltage-gated conductances (Brunel et al., 2008).  Gap junction coupling may promote the 

transfer of sub-threshold dynamics to population responses by homogenizing membrane potential trajectories 

across populations. 

Although it is conceptually simple to have a particular filtering function implemented in a single interneuron 

population, it is possible that more than one interneuron type participates.  In a second alternative 

implementation of the filtering network, the slow inhibitory synapses that generated resonance at the required 

frequency were expressed in a separate population of interneurons from those mediating fast feed-forward 

inhibition (Figure S1D).  The ‘slow’ population made inhibitory connections both recurrently and onto the ‘fast’ 

population.    The ‘fast’ population made synapses recurrently and onto the principal cells.  Recurrent 

connections in the ‘slow’ population induced resonance at a low frequency causing large amplitude, phase-

shifted oscillations in its firing rate in response to oscillating input.  These firing rate oscillations were imposed 

on the ‘fast’ interneurons by the synaptic connection between the two populations. 

Though differing in their precise biological implementation, due to their common dynamical mechanism, these 

alternative filtering networks share characteristic, experimentally testable electrophysiological features.  

Specifically, spike output of the principal cells is associated with large amplitude oscillation in the excitatory 

and inhibitory synaptic current rather than being determined by the average excitatory synaptic input.  

Additionally, spiking activity is associated with a phase shift between oscillation in the excitatory and inhibitory 

synaptic currents received by the output cells of the filtering network. 

 

Feedback Inhibition 

The filter network described in the main body of the paper contains only principal cells and a feed-forward 

interneuron layer.  We used this greatly simplified structure to illustrate the minimal circuitry needed to 

implement the filtering.  However, real neural circuits are more complex; feedback inhibition is ubiquitous and 

many interneuron populations mediate both feed-forward and feedback inhibition.  We tested whether filtering 

could continue to function in the presence of feedback inhibition.   

We first tested whether filtering continued to function in the presence of an additional population of 
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interneurons mediating feedback inhibition of the principal cell population.  Filtering continued to function 

effectively in the presence of feedback inhibition (Figure S2E,F). 

We then tested whether a feedback connection from the principal cells to the interneurons disrupted the filtering 

function.  As long as the feedback connection was not too strong, filtering continued to function effectively 

(Figure S2G,H).  As the strength of feedback connection was increased, a threshold was reached above which 

the principal cell interneuron loop started to oscillate spontaneously, even when driven by asynchronous input 

(Figure S2I).  This caused principal cells to fire strongly in response to asynchronous input and hence the 

filtering no longer functioned.  This transition to spontaneous oscillation occurred when the feed-back synapses 

were approximately 1/3 the strength of the feed-forward synapses (each interneuron received an equal number 

of feed-forward and feed-back excitatory synapses). 
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Figure S1 (related to Figure 4)
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Figure S1 (related to Figure 4) 

Alternative Filter Network Implementations 

Two alternative filter networks were designed (C, D),  which perform the same function as the original filtering 

network with alternative biological implementation of the resonant feed-forward inhibition.  These are 

compared with the original filtering network (B) and a pathway with no feed-forward filtering (A).  For 

simplicity, we show results for a filtering network in which all input afferents have the same firing rate.   (A1-

D1) Filter network diagrams showing input afferents (black), interneurons (green, purple) and principal cells 

(blue).  The input consisted of Poisson spiking activity in the input afferents with an asynchronous and an 

oscillating component.  The firing rate of the oscillating component was sinusoidally modulated at 40 Hz.  (A2-

D2) To illustrate each network’s ability to respond differentially to the asynchronous and oscillating inputs, the 

firing rate of the filter network principal cells was measured as the average firing rates of the asynchronous and 

oscillatory components of the input were systematically varied.  For all three networks incorporating resonant 

feed forward inhibition (B2-D2), the output firing rate responded strongly to increases in the firing rate of the 

oscillating input component (abscissa), while changes in the asynchronous input (ordinate) had little effect.  In 

the pathway with no filtering (A2) the output rate responded strongly to changes in both components of the 

input.  (A3-D3) Neuronal firing rates in response to asynchronous input (traces colored as in diagrams A1-D1).  

(A4-D4) Synaptic current in a sample principal cell in response to asynchronous input (blue – excitatory 

current, green – inhibitory current, red – net current).  (A5 – D5) Neuronal firing rates in response to oscillating 

input.  (A6 – D6) Synaptic currents in a sample principal cell in response to oscillating input. 
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Figure S2 (related to Figure 4) 

Figure S2 related to Figure 4 
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Figure S2 (related to Figure 4)  

(A,B) Graded Response of Filtering Network to the Average Firing Rate of Oscillating Input 

The filtering network was driven with a Poisson spike input consisting of an asynchronous and an oscillating 

component (sinusoidally modulated at 40 Hz).  The firing rate of the asynchronous component was held fixed 

while the average firing rate of the oscillating component was varied (average firing rate per input afferent 

indicated by color, from 2 Hz (yellow) to 10 Hz (red) in 2 Hz steps).  (A) Spatial pattern of activity in the input 

afferents showing the asynchronous (black) and oscillating (colored) components.  (B)  Spatial pattern of firing 

rate of filter network principal cells averaged over 500ms.  

(C) Effect of the Number of Distractors   

Traces show standard deviation of stimulus estimate as function of the number of distracting inputs, for 

estimates decoded from the filter network output (black trace), or the combined spike input (gray trace).  

(D-I) Filtering in the Presence of Feedback Inhibition 

Filter network with an additional population of feedback interneurons (D1), driven by (E) asynchronous input, 

(F) combined asynchronous and oscillating input.  (D2) Filter network with connection from principal cells to 

interneurons.  With a weak feedback connection, filtering continues to function effectively (G,H); above a 

threshold strength of feedback connection, the E-I loop starts to oscillate spontaneously when driven by 

asynchronous input (I).  (E1- I1) Spatial pattern of firing rates in afferent fibers (black - asynchronous Poisson 

input, Poisson input sinusoidally modulated at 40 Hz ). (E2- I2) Spatial pattern of firing rate in interneuron 

layer.  (E3- I3) Spatial pattern of firing rate in principal cell layer. (E4-6, F4-6, G4-5, H4-5, I4-5) Spike rasters, 

cell type indicated by label.  (E7, F7, G6, H6, I6) Firing rate of principal cell and interneuron  populations, line 

color corresponds to color of populations in diagram. 
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Figure S3 (related to Figure 6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 8

Figure S3 (related to Figure 6)   

(A-E) Effect of Presynaptic Network State on Gating Performance 

(A) Example traces showing network firing rate for 5 different states ranging from asynchronous to strongly 

oscillating.  (B) Spatial pattern of neuronal firing rates in the 5 states, color-coded as in D.  (C) Spatial pattern 

of gamma amplitude in the 5 states.  (D) Effect of varying the state of the sender network on gating 

performance.  Black trace shows standard deviation of stimulus estimate using filter network output, gray trace 

shows standard deviation of estimate from combined spike input. (E) Effect of varying state of distractor 

networks on gating performance.   

(F-H) Filtering in Different Frequency Bands 

Filtering networks with pass-bands at different frequencies were implemented by interneuron populations with 

different synaptic kinetics.  (F) Filter network with passband at 10 Hz. (H) Filter network with passband at 40 

Hz.  (F1, G1) Diagram of filter networks showing the alpha function τ for each synaptic connection.  (F2, G2) 

Filtering performance when driven by input oscillating at 10 Hz.  The filter network was driven by a Poisson 

input consisting of an asynchronous component and a component sinusoidally modulated at 10 Hz.  The firing 

rate of the filter network principal cells is plotted as a function of the firing rate of the oscillating and 

asynchronous components of the input.  (F3, G3) Filtering performance when driven by 40 Hz input oscillation. 

(H) Pass-bands of the two filter networks.  The filter networks were driven by a sinusoidally modulated input 

(Average firing rate per afferent 30 Hz, modulation depth 0.5) whose modulation frequency was varied between 

2 and 100 Hz (Blue – 10 Hz filter network, green 40 Hz filter network).  

(I-N) Nested Oscillations Create Amplitude Patterns in Multiple Frequency Bands 

(I-K) Network activity during nested oscillations, a network oscillating at 40 Hz was modulated at 4 Hz by an 

externally applied sinusoidal current. (I) Principal cell spike raster. (J) Interneuron spike raster. (K) Average 

firing rate in principal cell (blue) and interneuron (green) populations.  (L-N) Spatial pattern of firing rate and 

firing rate oscillation amplitude in the network with nested oscillations (blue) and for comparison in an 

asynchronous network (black).  (L) Neuronal firing rate evaluated over 3 cycles of 4 Hz oscillation (750 ms).  

(M) Firing rate oscillation amplitude at 4 Hz.  (N) Firing rate oscillation amplitude at 41 Hz.  Amplitudes were 

calculated for Hanning-windowed sections of activity lasting 3 cycles of the oscillation frequency being 

measured (75 ms at 41 Hz, 750 ms at 4 Hz).  
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