SUPPLEMENTAL INFORMATION

Structure and Mutational Analysis of the Archaeal GTP:AdoCbi-P Guanylyltransferase (CobY) from *Methanocaldococcus jannaschii*: Insights into GTP Binding and Dimerization.

Sean A. Newmister^{1§}, Michele M. Otte^{2§}, Jorge C. Escalante-Semerena², and Ivan Rayment^{1*} From the Departments of Biochemistry¹ and Bacteriology² of the University of Wisconsin, Madison, WI 53706 *Corresponding author: 433 Babcock Drive, Madison WI 53706; Telephone: 608-262-0437; Fax: 608-262-1319; E-mail: <u>ivan_rayment@biochem.wisc.edu</u>

[§]Contributed equally to the work

Running title: Structure and mutational analysis of an archaeal GTP:AdoCbi-P guanylyltransferase

Table S1. List of strains and plasmids used in these studies.

Strain or plasmid	Genotype	Reference or source²
Salmonella enterica ¹		
TR6583; formerly SA2929	metE205 ara-9	K. Sanderson via J. Roth
•		
Derivatives of TR6583		
JE8268	$\Delta cob1315 \Delta ycfN112^{3}$	(1)
Derivatives of JE8268		
JE8269	/ pT7-7	(2)
JE8335	/ pCOBY14	(2, 3)
JE9293	/ pCOBY42	
JE9294	/ pCOBY43	
JE9299	/ pCOBY44	
JE9305	/ pCOBY45	
JE9306	/ pCOBY39	
JE10882	/ pCOBY48	
JE10883	/ pCOBY49	
JE10884	/ pCOBY50	
JE10885	/ pCOBY51	
JE10886	/ pCOBY52	
JE10887	/ pCOBY53	
JE12119	/ pCOBY57	
JE12120	/ pCOBY58	
JE12121	/ pCOBY59	
JE12503	/ pCOBY56	
JE12504	/ pCOBY60	
Escherichia coli		
BL 21 CodonPlus® (DE3) BI	B F ompT hsdS (r_B , m_B) dcm ⁺ tet gal λ (DE3)	Stratagene
DE21-Codoin lus® (DE5)-KiE	endA Hte (argU ileY leuW cat)	Stratagene
Plasmids		
pT7-7	<i>bla</i> ⁺ ; cloning vector	Derivative of pT7-1 (4)
Derivatives of pT7-7		
pCOBY14	<i>M. jannaschii cobY</i> ⁺ in pT7-7 bla^+	(5)
pCOBY39	<i>M. jannaschii cobY1</i> , encodes CobY ^{G153D}	

Derivatives of pCOBY14		
pCOBY42	<i>M. jannaschii cobY2</i> , encodes CobY ^{G8D}	
pCOBY43	<i>M. jannaschii cobY3</i> , encodes CobY ^{P20A}	
pCOBY44	<i>M. jannaschii cobY4</i> , encodes CobY ^{N177R}	
pCOBY45	<i>M. jannaschii cobY5</i> , encodes CobY ^{P94A}	
pCOBY48	<i>M. jannaschii cobY6</i> , encodes CobY ^{P54A}	
pCOBY49	M. jannaschii cobY7, encodes CobY ^{D101G}	
pCOBY50	<i>M. jannaschii cobY8</i> , encodes CobY ^{E18D}	
pCOBY51	<i>M. jannaschii cobY9</i> , encodes CobY ^{T53S}	
pCOBY52	<i>M. jannaschii cobY10</i> , encodes CobY ^{Y80F}	
pCOBY53	<i>M. jannaschii cobY11</i> , encodes CobY ^{D83G}	
pCOBY56	<i>M. jannaschii cobY12</i> , encodes CobY ^{S50A}	
pCOBY57	<i>M. jannaschii cobY13</i> , encodes CobY ^{T56A}	
pCOBY58	M. jannaschii cobY14, encodes CobY ^{S100A}	
pCOBY59	M. jannaschii cobY1395, encodes CobY ^{T180A}	
pCOBY60	<i>M. jannaschii cobY15</i> , encodes CobY ^{N179D}	
pCOBY61	<i>M. jannaschii cobY16</i> , encodes CobY ^{L38K K41D}	
pCOBY62	<i>M. jannaschii cobY17</i> , encodes CobY ^{L38K L41D}	
pCOBY63	M. jannaschii cobY18, encodes CobY ^{I144D F146D}	

¹All strains are derivatives of *S. enterica* serovar Typhimurium strain LT2 and carry a null allele of the *metE* gene, which encodes the Cbl-independent methionine synthase (MetE) enzyme. In the absence of Cbl, *metE* mutants are methionine auxotrophs. When Cbl is available, *metE* mutants use the Cbl-dependent methionine synthase (MetH) enzyme to methylate homocysteine to methionine (6).

²Strains were constructed for this study unless otherwise indicated.

³In the text, this strain is referred to as $\Delta cobU \Delta ycfN$.

Table S2. List of primers used for site-directed mutage	nesis.
---	--------

Plasmid	Amino Acid Change	Forward Primer Sequence	Reverse Primer Sequence
pCOBY42	G8D	5'- GGA TGC TCT AAT TAT GGC T GA TGG TAA AGG AAC AAG AAT GGG TGG AG -3'	5'- CTC CAC CCA TTC TTG TTC CTT TAC C AT C AG CCA TAA TTA GAG CAT CC -3'
pCOBY50	E18D	5'- CAA GAA TGG GTG GAG TT G AT A AGC CGT TGA TTA AGC -3'	5'- GCT TAA TCA ACG GCT T AT C AA CTC CAC CCA TTC TTG -3'
pCOBY43	P20A	5'- GGG TGG AGT TGA AAA G GC G TT GAT TAA GCT TTG TGG -3'	5'- CCA CAA AGC TTA ATC AA C GC C TTT TCA ACT CCA CCC -3'
pCOBY56	S50A	5'- GTA AAT AAT ATA TTT ATC GCT ACC GCT CCA AAT ACA CCA AAG -3'	5'- CTT TGG TGT ATT TGG AGC GGT AGC GAT AAA TAT ATT ATT TAC -3'
pCOBY51	T53S	5'- CGC TAC CTC TCC AAA T TC A CC AAA GAC AAA GG -3'	5'- CCT TTG TCT TTG G TG A AT TTG GAG AGG TAG CG -3'
pCOBY48	P54A	5'- CGC TAC CTC TCC AAA TAC A GC GAA GAC AAA GGA ATA TAT AAA TTC AGC -3'	5'- GCT GAA TTT ATA TAT TCC TTT GTC TT C GC T GTA TTT GGA GAG GTA GCG -3'
pCOBY57	T56A	5'- CCA AAT ACA CCA AAG GCA AAG GAA TAT ATA AAT TCA GC -3'	5'- GCT GAA TTT ATA TAT TCC TT T GC C TTT GGT GTA TTT GG -3'
pCOBY52	Y80F	5'- GTT ATA GAC ACA TCT GGT AAA GGT TTT ATA GAA GAT TTA AAT GAA TGT ATT GG -3'	5'- CCA ATA CAT TCA TTT AAA TCT TCT AT A AA A CCT TTA CCA GAT GTG TCT ATA AC -3'
pCOBY53	D83G	5'- CTG GTA AAG GTT ATA TAG AAG GCT TAA ATG AAT GTA TTG G -3'	5'- CCA ATA CAT TCA TTT AA G CCT TCT ATA TAA CCT TTA CCA G -3'

pCOBY45 F		5'- GTA TTG GAT ATT TCT CAG AAG	5'- GTC AGA GCT AAC AAC TAA GAA CGC
	1 247	CGT TCT TAG TTG TTA GCT CTG AC -3'	TTC TGA GAA ATA TCC AAT AC -3'
pCOBY58 S	S100A	5'- CCA TTC TTA GTT GTT AGC GCT	5'- CGA TTT TAA GTT AAT TAA GTC AGC
	5100A	GAC TTA ATT AAC TTA AAA TCG -3'	GCT AAC AAC TAA GAA TGG -3'
pCOBY49	D101G	5'- CCA TTC TTA GTT GTT AGC TCT	5'- CGA TTT TAA GTT AAT TAA GCC AGA
	DIUIG	GGC TTA ATT AAC TTA AAA TCG -3'	GCT AAC AAC TAA GAA TGG -3'
pCOBY39	G153D	5'- CGG CTT AGT TCC TGC AGA CAT	5'- GGG GAT ACA ACA TTT AT G TC T GCA
		AAA TGT TGT ATC CCC -3'	GGA ACT AAG CCG -3'
pCOBY44	N177D	5'- GGT TAT TGA TGA GCT GAT ATT	5'- CAT CTT TAG TAT TTA T GC G GA ATA
	NI//K	CCG CAT AAA TAC TAA AGA TG -3'	TCA GCT CAT CAA TAA CC -3'
	N170D	5'- GAG CTG ATA TTC AAT ATA GAT	5'- GCA AGT TTT AAA TCA TCT TTA GTA
рсовтоо	N1/9D	ACT AAA GAT GAT TTA AAA CTT GC -3'	TCT ATA TTG AAT ATC AGC TC -3'
pCOBY59	T180A	5'- GAT GAG CTG ATA TTC AAT ATA	
		AAT GCT AAA GAT GAT TTA AAA CTT	3 - CAU CAA OII IIA AAI CAI CII IAG
		GCT G -3'	CAT TIA TAT TOA ATA TCA OCT CAT C- 5
	L38K K41D	5'- CTT ATA GAT TAT GTT GTC TCT CCC	
pCOBY61		TTA AAG AAA TCA GAT GTA AAT AAT	None
		ATA TTT ATC GCT ACC TCT CC -3'	
pCOBY62	L38D L41D	5'- CTT ATA GAT TAT GTT GTC TCT CCC	
		TTA GAT AAA TCA GAT GTA AAT AAT	None
		ATA TTT ATC GCT ACC TCT CC -3'	
	1144D F146D Y163R	5'- CA AAA GAA AAA TAT CCA AAC	
pCOBY63		CCC TCA GAC GAT GAC AAC GGC TTA	
		GTT CCT GCA GGG -3'	None
		5'- GTT GTA TCC CCA AAG CAT GGA	
		CGT CAA AAA GAA GAA ATT ATG GTT	
		ATT GAT G -3'	

Bold type indicates the codon changed. Plasmids were constructed using method A, with the exception of plasmids pCOBY61-63, which were constructed using method B; both methods are described under Experimental Procedures.

M jann	MDALI <mark>MAGG</mark> KGT <mark>R</mark> MGG-V <mark>EKP</mark> LIKLCGRCLI	DYVVSPLLKS-KVNNIFIAT <mark>S</mark> PN <mark>TP</mark> K <mark>I</mark> KEYINSAYKDYKNIVVIDTS <mark>G</mark> KG <mark>Y</mark> IE <mark>D</mark> LNECIG	90
M mari	MDALI <mark>MAGG</mark> KGT <mark>R</mark> LKENV <mark>EKP</mark> ILNICEKPMI	DYVIDSLLNS-KIEKIYVAV <mark>S</mark> IH <mark>TE</mark> K <mark>E</mark> KEYLEKKYRLDRNYNPKIDIICTS <mark>C</mark> TN <mark>Y</mark> VDDLNECME	94
M vann	MDVLI <mark>MAGG</mark> MGT <mark>R</mark> LKKNI <mark>EKP</mark> LLKISGKPMI	DYIMEAVLNS-NIEKIRISV <mark>S</mark> KH <mark>TE</mark> N <mark>I</mark> KIYIENNYINTKKYNQRVEIIHTS <mark>GIGYIND</mark> LNECIE	94
Ms maz	MDAIV <mark>MAGG</mark> FGQ <mark>R</mark> LGM-G <mark>EKP</mark> CVELLGKPLI	TYVIDNLRASKNIDRVFVAV <mark>S</mark> PV TE KTEIMIQERYKGEVQVIRTF <mark>G</mark> GN Y VG <mark>D</mark> MIHAVE	88
M bark	MDAIV <mark>MAGG</mark> FGQ <mark>R</mark> LGM-G <mark>EKP</mark> CVELLGKPLI.	AYVIDTLRASENIDRVFVAV <mark>S</mark> PV TE RTEIMIQERYKGEVRVIRTFCGNYVGDMIHAVE	88
M burt	MAGGQGL <mark>R</mark> LGM-G <mark>EKP</mark> CVELLGKPLI	SYVIDSLERSSYIERIFVAV <mark>S</mark> PS TPAT EELVNEKYGDHIQAIYTNCDNYVCDMVYAVE	83
M therm	MAGGKGSRLGM-GEKPMVRLYKKPLI	DYVVSALRPSTERIIVATTRATEETRRWSLGKNLEVVDTSGSGYIPDMVEAVE	78
M the	MNRMMALV <mark>MAGG</mark> RGT <mark>R</mark> LAIDC <mark>EKP</mark> LLEVAGRPMI	DHVLEALESATGVDGIIVVT <mark>S</mark> PHTEMTEDHVRGRHPIFRAS <mark>G</mark> GGYVEDLREVLS	88
M stad	MTTALI <mark>MAGC</mark> KGTRLDLDY <mark>EKP</mark> MVKVNTKPMI	SYVIEALSFSTYIDKILVAV <mark>S</mark> PN TECT ADYVKKYPVIVVKTKGLGYIEDLSDILS	87
M hung	MFALI <mark>MAGC</mark> RAS <mark>R</mark> LGM-G <mark>EK</mark> ALTRIHDKPLL	SFVLNAVEMAELEPVVIVSPLTPYTTNYCRMHDIPWICTDCKCYVODICOAVG	83
A fulq	MLTLLMCGGKGTRLGR-GEKPLFEVCGMKLI	DHSLLOYKDFDVIAITSPHTPATESYLAEKGVEVYRAAGKGYIEDYSEACR	81
T koda	MIIIL <mark>AGG</mark> KSTRMGKEKPVLKIAGKEML	LWVYASASRVDETIVALSKNTEKTRELCLREGIPFMETPGKGYVEDVOWLLN	80
M jann	YFSE <mark>P</mark> FLVVS <mark>SD</mark> LINLKSKIINSIVDYFY	CIKAKTPDVEALAVMIPKEKYP-NPSIDFN <mark>G</mark> -L-V PA<mark>C</mark>INVVSPKHGYOKEEIMVIDELI	176
M mari	FFKERFLILSSDIPTIKPKVINSIIODYL	FVNNSCNRIESFCVVTKDDDYVGTPSINMG <mark>G</mark> YIRLCINILTPKHGEOTEILHVIKDII	181
M vann	YFKEPFLILTSDIPTIKSKTINSTINEYL	TINNSNNPIESLCAVTLKENVIGTPTIDIKGYTPLGINTISPKYGEOTEMLYLTDEKT	181
Ms maz	TSNTAGPVMTIMSDLPLVNPDLTDSVIEKYR	EEGKPALSVYVPINVCRGTGTRPDTVFNKDGKLIVPAGVNILDSSOIRKEOEDFNLILDNPRLA	182
M bark	TAETVGPVMTIMSDLPLINSELTDSVIEKYK	EEGKPALSVYVPINVCKGAGIRPDTVFNKDGKLIVPAGINTLDSSOIRKEOEDFNLILDNPKLA	182
M burt	SSNIOEPVMIIMSDLPMVTPKLTDSIIEAYR	DCGSSSMSVFVPISLCKKVGIRPDTVFNWKGNLIVPAGINILDGKFINEEOEYHNYILDDPEVA	178
M therm	RAGISGPVMVIMADLPLITEEIVREVIDAYK	SRPEPALSVHTLLSLHRSLGRRPDVIFNYMGELIVPAGVNILTGSRISDEOEDFHLIMNRIELA	173
M the	HLEES-YHEPLLVINSDLPLVRPSTIDWIISSYH	SCPEPAMCVAVPDDLCRRHGLDFSGSLDG-L-VPCCVNTLMSKNRVOEORILEASMLELA	179
M stad	NRKYVDEDEVVMTTVSDIPETTSTOTDDVIDNYY	ERKKPAMCVSVPAYLFEKYGI-TPTMVYEG-L-VPTCVNLLLANNKEODOTIYVSKNIELA	179
M huna	ELSISCPELTICADLPGTTADHIBKITEOFH		168
A fula		KTIKPALTTVVMECEPVCVNTIDSLINTWOEEEIYSIEK-DSV	153
T koda	EFGPETSSSSDIPEVKPSDEYAVKKAEN	GKTSLTGVLPIOKVPKDIKPLVYRGYAIVGINAVGFEGEGFFELENPLLA	158
1 Nouu			100
Miann		1 07	
M mari	VNUMUI SOKKI VETI INKVVE	201	
M wann	VNVNTI JOKNI VENI IKKCD	201	
Ma mag		201	
M bark		203	
M burt		203	
M thorm		200	
M the	INTRECODI KAI EKTI CETDODESATE	200	
M ctod	VNINDCADLAVLEAILGEIDGKEEARKGKEVLE	100	
n Stad M hung		107	
n nung		101	
A IULO Theode	VINNELVADVERAEKEWITTMEREKGWQRD	101	
i koad	LNVN FEBLELEEKIAKLVKEVIFGWEDLTTGR		

Figure S1. Alignment of putative CobY proteins. Conserved residues are outlined in black; conservative changes are shown in gray. *M jann, Methanocaldococcus jannaschii* DSM 2661; *M mari, Methanococcus maripaludis* S2; *M vann, Methanococcus vannielii* SB; *Ms maz, Methanosarcina mazei* Gö1; *M bark, Methanosarcina barkeri* str. *fusaro; M burt, Methanococcoides burtonii* DSM 6242; *M therm, Methanothermobacter thermautotrophicus* str. Δ H; *M the, Methanosaeta thermophila* PT; *M stad, Methanosphaera stadtmanae* DSM 3091; *M hung, Methanospirillum hungatei* JF-1; *A fulg, Archaeoglobus fulgidus* DSM 4304; *T koda, Thermococcus kodakarensis* KOD1. Site-directed substitutions were made at the conserved residues highlighted in blue; conserved residues highlighted in red inactivated the enzyme.

REFERENCES

- 1. Otte, M. M., Woodson, J. D., and Escalante-Semerena, J. C. (2007) The thiamine kinase (YcfN) enzyme plays a minor but significant role in cobinamide salvaging in *Salmonella enterica*, *J. Bacteriol*. 189, 7310-7315.
- 2. Otte, M. M., and Escalante-Semerena, J. C. (2009) Biochemical characterization of the GTP:adenosylcobinamide-phosphate guanylyltransferase (CobY) enzyme of the hyperthermophilic archaeon *Methanocaldococcus jannaschii*, *Biochemistry* 48, 5882-5889.
- 3. Otte, M. M., and Escalante-Semerena, J. C. (2009) Biochemical characterization of the GTP:adenosylcobinamide-phosphate guanylyltransferase (CobY) enzyme of the hyperthermophilic archaeon *Methanocaldococcus jannaschii*, *Biochemistry* 48, 5882-5889.

- 4. Tabor, S., and Richardson, C. C. (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes, *Proc. Natl. Acad. Sci. U.S.A.* 82, 1074-1078.
- 5. Grochowski, L. L., Xu, H., and White, R. H. (2008) Identification and characterization of the 2-phospho-Llactate guanylyltransferase involved in coenzyme F420 biosynthesis, *Biochemistry* 47, 3033-3037.
- 6. Matthews, R. G. (2001) Cobalamin-dependent methyltransferases, Acc. Chem. Res. 34, 681-689.