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Supplementary Text 

Derivation of the IOP for protein ensembles 

The ideal order parameter, O, for protein ensembles should have the following properties: 

1. 0 1O≤ ≤  

2. 1O =  iff the protein adopts one conformation throughout its biological lifetime; 

3. 0O =  iff the protein can only be described by an infinite number of structurally dissimilar 

states; i.e. the protein is completely unstructured. 

We begin by defining an ensemble by ( ),X S= w , where { }1, , nS s s= K  is the set of 

conformations 3N

i
s R∈  and ( )1, , nw w=w K  is the corresponding vector of population weights, 

which is a function of the relative stabilities of the different structures within the ensemble. We 

begin by grouping these conformations into two “states”: one consisting of a single 

conformation, is  , and the other consisting of all the other conformations, { }j j i
S

≠
. The 

probability of the first state is iw  and the probability of the second state is 1 iw− . In fact, there 

are n different ways of partitioning the structures in the ensemble in this fashion. Our motivation 

comes from the realization that if the protein is completely ordered (which we will call “frozen”) 

then one of these two states will have probability 1.  That is, if the protein is frozen then there 

exists a k such that 1kw = .  We now compute the ensemble average distance between the 
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probability vectors ( ),1
i i i

W w w= −
r

 and ( )1,0F =
r

, where the latter corresponds to the protein 

being frozen: 

 ( )
1

1 ,
n

i i

i

O w D W F
=

= −∑
r r

%  (1) 

Here D is some appropriate measure of the distance between the probability vectors 
iW
r

 and F
r

.  

Note that if the protein only adopts structure ks  then 1kw = ,  ( )1,0kW =
r

 and 

( )( )0 and 0,1i k i iw W≠∀ = =
r

 so that 1O =% .   

To implement the scheme outlined in equation (1), we need an appropriate choice of a distance 

metric between two probability distributions/vectors.  The distance between two generic 

probability vectors, ( )1, , nP p p=
r

K  and ( )1, , nQ q q=
r

K  is typically obtained using the Kullback-

Leibler (KL) divergence:1 

 ( ) 2
1

log
m

i
i

i i

p
KL P Q p

q=

=∑
rr

 (2) 

which has a range ( )0 KL P Q≤ < ∞
rr

. However, as stated earlier, we need our order parameter to 

be bounded by 0 and 1.  A slightly modified form of the KL divergence, 
2

P Q
KL P

 +
  
 

rr

r

, which 

itself lies in the interval[ ]0,1 , makes this possible. Now if we define  

 ( ),
2

i
i i

W F
D W F KL F

 +
≡   

 

r r

r r r

 (3) 
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then equation (1) becomes: 

 ( )2
1 1

1 log 1
2

n n
i

i i i i

i i

W F
O w KL F w w

= =

 +
≡ − = +  

 
∑ ∑

r r

r

%  (4) 

 

Formal definition of O% and its bounds 

 In the derivations presented above and throughout the main text we have focused on using the 

order parameter to describe the heterogeneity of a protein conformational ensemble; however, 

the OP can be defined more generally as a description of the degree of order for any discrete 

random variable.  

Definition: Let X be a discrete random variable and p be a probability distribution of X. The 

information order parameter is defined as ( ) ( ) ( )( )2log 1
x X

O p p x p x
∈

= +∑% , where we have 

explicitly written the order parameter as a function of the underlying probability distribution. 

Theorem 1: Let n be the number of different states available to the discrete random variable X 

with probability distribution p. The information order parameter is bounded by 

( )2

1
log 1

n
O p

n

+
≤ ≤% .  

Proof of Theorem 1: First, note that since probabilities are non-negative ( ) 0p x ≥  and 

( )( )2log 1 0p x+ ≥  implying that ( ) 0O p ≥% . To prove the tighter lower bound we will minimize 

( )O p%  over p subject to the constraint that ( ) 1
x X

p x
∈

=∑  using the method of Lagrange 

multipliers. The Lagrange function to be minimized is: 
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 ( ) ( ) ( )( ) ( )2, log 1 1
x X x X

p p x p x p xλ λ
∈ ∈

 
Λ = + + − 

 
∑ ∑  

Taking the derivatives, we have ( )( ) ( )
( )

log 1 0
1

p x
p x

p x
λ+ + + =

+
, which implies that 

( ) ( ) ,p x p y x y X= ∀ ∈  because the probability of x X∈  depends only on the Lagrange 

multiplier. From this, and the given summation constraint, we have ( ) 1
p x x X

n
= ∀ ∈ , which 

corresponds to ( ) 2

1
log

n
O p

n

+
=% . The upper bound follows from Jensen’s inequality for concave 

functions as ( ) ( ) ( )( ) ( )2

2 2log 1 log 1 1
x X x X

O p p x p x p x
∈ ∈

 
= + ≤ + ≤ 

 
∑ ∑% ■ 

 

A smoothed order parameter 

The metric given by equation (4) has the correct bounds for an order parameter; however, it 

ignores the fact that structures within a given ensemble may share some similarity.  If many of 

the structures happen to be very similar to each other than it is helpful to smooth the 
i

W
r

 

probabilities with a kernel function. A simple method is to use a Gaussian kernel, giving a 

smoothed probability ( )
( )2

2
1

,
exp

2

n
i j

i j

j

D s s
s w

D=

 −
 Ω ≡
 
 

∑ , where ( )2 ,i jD s s  is the Cα coordinate 

mean-square deviation (MSD) between structures is  and 
js  and 2

D  is the average pairwise 

MSD due to the fluctuations of a typical protein, which we estimate from simulations as 

described below. Plugging the smoothed probabilities into eq. (4) we obtain: 
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 ( )( )2
1

log 1
n

i i

i

O w s
=

≡ +Ω∑  (5) 

It is easy to show that both O  and O%  lie within [ ]0,1 . Note that ( )0 ,  and 1i iw s≤ Ω ≤  implying 

that ( ) ( )( )2 20 log 1  and log 1 1i iw s≤ + + Ω ≤ . Thus, 0  and 1O O≤ ≤%  follows automatically from 

eqs. (4) and (5). In addition, we present a theorem below showing that  O O≥ % .  

Theorem 2: Let ( ),X S= w  be an ensemble where w  is a vector of population weights and 

{ }1, , nS s s= K  is a set of non-redundant structures; i.e. ( )2 , 0i jD s s i j= ⇔ = . Then O O≥ %  for 

any value of 2 0D > . 

Before presenting the proof of Theorem 2, it is necessary to state and prove the following simple 

lemmas. 

Lemma 1: 
2 0

lim
D

O O
→

= % .  

( )

( )

2 2

2

2 20 0 1 1

2
1 1

2
1

,
lim lim log 1 exp

2

log 1

log 1

n n
i j

i j
D D

i j

n n

i j ij

i j

n

i i

i

D s s
O w w

D

w w

w w

O

δ

→ → = =

= =

=

  −
  = +

    

 
= + 

 

= +

=

∑ ∑

∑ ∑

∑
%

 

Lemma 2: 
2

0
O

D

∂
≥

∂
.  
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( )

( )

( ) ( )

( )

2

22 2 2
1 1

2 2

2 22
1

2 2
1

2
1

,
log 1 exp

2

, ,
exp

22
log

,
1 exp

2

0

n n
i j

i j

i j

n
i j i j

j
n j

i
ni i j

j

j

D s sO
w w

D D D

D s s D s s
w

DD
e w

D s s
w

D

= =

−
=

=

=

  −∂ ∂   = +
  ∂ ∂   

 −
 
 
 

=
 −
 +
 
 

≥

∑ ∑

∑
∑

∑
 

 

Proof of Theorem 2: Suppose that Theorem 2 is false and there exists some ensemble X such that 

O O< %  for some value of 2 0D > . According to Lemma 1, O  must eventually go to O%  as we 

decrease 2
D  towards zero; i.e. it must increase as 2

D  decreases. This implies that there 

must be some value 
*2

D  where 
*2

2
0

D

O

D

∂
<

∂
, which contradicts Lemma 2. Therefore, 

O O≥ %  is proved by contradiction■ 

Given Theorem 1 and Theorem 2, it is clear that 2

1
log 1

n
O

n

+  ≤ ≤ 
 

. 

Estimating 2
D  from molecular simulations 

To determine an estimate for 2
D  at room temperature, we used data from representative 

trajectories within the Dynameomics project.2-7 The Dynameomics database contains molecular 

dynamics simulations at 298K of at least 31ns for a relatively large selection of proteins 

corresponding to highly-populated structural folds. The all-atom simulations were conducted 
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with the in lucem molecular mechanics (ilmm) program using the explicit solvent model F3C.8-10 

Ensembles were constructed for each protein from the trajectories by selecting 1000 structures, 

in 3ps intervals, from the first 30ns of simulation. We calculated the average pairwise MSD for 

each trajectory, 2

j
D (where j denotes the j

th trajectory), and estimated 2
D  as the mean of 

these values after discarding any outliers; i.e., the 5 most and 5 least flexible proteins.  This 

resulting value of 2 2.75D = Å2 was used in all subsequent calculations. A comparison of the 

2D  value calculated using only the first 22.5 ns of each simulation (2.6 Å2) to its value 

calculated using the full 30 ns simulations (2.75 Å2).  The difference between the two values is 

less than 10%, thereby suggesting that the 2D  statistic had reasonably converged. To further 

demonstrate that these differences are not significant, we recalculated the order parameters for 

the Dynameomics data for a ±10% (0.275 Å2) change in 2D , and found that changes of this 

magnitude had a minimal affect on the calculated order parameters as shown in Figure S1 below.  

In addition, we note that since the same value of 2D  is used to compute the order parameter 

value for each protein, the relative rank “ordering” of the proteins is not affected by the value of 

2D . 
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Figure S1. A 10% change in 2D   on calculated order parameters. 

Derivation of an approximation for the order parameter from crystallographic B-factors 

It is helpful to have an approximation to eq. (5) that can be calculated directly from X-ray 

crystallographic data. To accomplish this we first note that for any differentiable functions ,f g  

of a random variable X one can perform a Taylor series expansion about [ ]E X  to the lowest 

order using the Law of Iterated Expectation to obtain: 

 ( )( ) [ ]( )( )E f E g X f g E X  ≈     (6) 

Next, we make use a recently derived relationship between the MSD and crystallographic B-

factors:11 

 ( )2
2

1

32
,

8

N
i

i j

i

B
E D s s

N π=

  ≈  ∑  (7) 

Combining eqs. (5)-(7) we obtain: 

 2 22
1

31
log 1 exp

42

N
i

i

B
O

ND π=

  −  ≈ +
    

∑  (8) 

It is important to note that one limitation to eq. (8) is that it is based on the lowest order Taylor 

series approximation (eq. (5)(6)). To make sure that this approximation provides a reasonable 

level of accuracy, we compared order parameters calculated with eq. (5) to those calculated using 

the corresponding lowest order Taylor series approximation: 
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( )2
2 2

1 1

1
log 1 exp ,

2

n n

i j i j

i j

O w w D s s
D = =

  −  ≈ +
    

∑ ∑  (9) 

for the ensembles obtained from the Dynameomics project.2-7 As shown in Fig. S2, the lowest 

order approximation is generally accurate, particularly when 0.5O >  as was the case for all of 

the crystal structures discussed in the main text. 

 

 

Figure S2. A comparison of the OP calculated using eq. (5) (black) and eq. (9) (red) for the 

Dynameomics ensembles.  
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List of PDB codes of proteins used from the Dynameomics project. 1wit, 3chy, 1ypi, 1ris, 1enh, 

1shf, 1sac, 1ubq, 1mjc, 4icb, 1a6n, 1uu2, 1cun, 1ril, 1was, 1ep0, 2pth, 1qau, 1ebd, 1vid, 4wbc, 

1dyn, 1jam, 2go0, 2giw, 1tmc, 1ifc, 1pma, 1snb, 1bp5, 1d1n, 1hh8, 1bs2, 1cok, 1ixa, 1vap, 1ier, 

1jd1, 1dj1, 1ypr, 1bfd, 1eqk, 1gad, 1lbd, 1hgu, 1ab2, 1qaz, 1iad, 1b6b, 1fkb, 1ntn, 1nr2, 1byl, 

1l8l, 2trc, 1fzw, 1bo9, 1ezg, 2hnp, 1r4v, 1bsg, 1p9g, 1d6t, 1esj, 1cvz, 1ceq, 1d0n, 11as, 1j1y, 

1hcc, 1p99, 1cuk, 1u9a, 2lao, 1elp, 1bf0, 1uxc, 1php, 3grs, 1f8d, 1bhd, 1ddg, 1g5b, 2tgi, 1d8v, 

1bqg, 1axj, 1agi, 1ihb, 1fzt. 
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