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APPENDIX 

Here we generalized the results of Ghosh and Lin (2000) to obtain the decomposition 

of m F t F t{ ( ) ( )}1 1−  for clustered competing risks data. We define the following random 

processes: 

1 1 1( ) ( ) ( ) ( )ik ik ikdM t dN t Y t dH t= − , and ( ) ( ) ( ) ( )ik ik ikdM t dN t Y t dH t= − . 

Let 1 1
0

( ) ( )
t

ik ikM t dM u= ∫  and 
0

( ) ( )
t

ik ikM t dM u= ∫ . Since event times for individuals within the 

same cluster are correlated, both 1 ( )ikM t  and ( )ikM t are no longer martingales with respect to the 

overall joint filtration F 1 1 { ( ), ( ) : 0 }inn
t i k ik ikY s N s s tσ= == ∨ ∨ ≤ ≤ . Therefore, the martingale central 

limit theory cannot be applied. Following the procedure of Ghosh and Lin (2000), we have the 

following equation 
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t t
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⎣ ⎦
∫ ∫ . 

Using results from empirical processes (Pollard, 1984; Spiekerman and Lin, 1998), both 

{ }1 1
ˆ ( ) ( )H u H u−  and { }ˆ ( ) ( )H u H u−  can be decomposed into a sum of mean zero random 

variables. Therefore, we have 

                     1 1
1 1
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where  
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and ( ) ( )iky t P t X= ≤ . For any fixed time t , by the law of large numbers for a weakly dependent 

series (Feller, 1957), 1 1
ˆ ( ) ( )F t F t−  converges to zero in probability. Therefore, 1̂( )F t is a 

consistent estimator for the cumulative incidence function 1( )F t . 
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Since the decomposed terms ( )ikZ t  only depend on observation k in cluster i, they are 

correlated within the same cluster, but independent between different clusters. By using the 

methods for the clustered linear statistic (Williams, 2000), the between-cluster variance estimator 

of the linear statistic
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we conclude that ˆ( )V t is a consistent estimator for the variance of ( )Z t . 

For the variance of the Gray test under the null, assuming that process ( )W t converges 

to ( )W t in probability, and 0
0

m
m

ρ→  as m →∞ , we show that ˆ
GQ can be rewritten as sum of 

some mean zero random variables: 
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  (A.2) 
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By applying the robust variance estimator method of Williams (2000) to equation (A.2), one can 

consistently estimate the variance for test statistics ˆ
GQ by 
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When individuals in groups 0 and 1 are from different clusters, above formula reduce to  
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Similarly, the robust variance for test statistics ˆ
PMQ can be consistently estimated by 
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when individuals in groups 0 and 1 are from different clusters. 

 


