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Effect of stretching and bending on the measured tension  

 The method proposed in this study measures the displacement of individual SFs 

by applying an external force perpendicular to the fiber axis. Although the method enables 

us to measure tensions, it also generates other undesired forces in the SFs due to phenomena 

such as stretching and bending. Here, we estimate the stretching and bending forces and 

analyze the effects of these undesired forces on the measured tensions in SFs. 

 The SFs are assumed to have a cylindrical shape and elastic mechanical properties. 

The geometrical parameters associated with the tension measurements are shown in Fig. S1. 

When an external force F is applied perpendicular to the SF axis, the SF becomes stretched 

as shown in Fig. S2 A, where FS represents the stretching force. Considering the left part of 

the SF, the strain, L, due to the stretching is expressed as 
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The force FS can then be written as 
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where AL is the cross-sectional area, rSF the cross-sectional radius, and E is the elastic 

modulus of the SF. Substituting L = 5, which is typical of the values measured in this 

study, and rSF = 100 nm and E = 0.5 MPa from the literature (1) gives an estimated force 

due to stretching of FS = 60 pN. This is about 4% of the measured tension of 1.6 nN; 

therefore, the effect of stretching on the tension measurements is considered negligible.  

 When an SF is bent by an external force F, it is opposed by a repulsive force FR 

due to the bending rigidity of the SF (Fig. S2 B). The displacement, y, at the point of 

application of the external force is given by 
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where a and b are the lengths of the left and right sections of the SF, respectively, and I is 

moment of inertia, which can be written as 
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Substituting typical measured values of a = b = 2.5 µm and L = 5, and values of rSF and E 

from the literature, Eq. S3 gives an estimated repulsive force of FR = 3.3 pN. Because the 

repulsive force due to bending is just a few percent of the applied external force of several 

hundred piconewtons, the effect of the bending on the tension measurements is also 

considered to be negligible.  

 

Fig. S1  Geometrical parameters when an external force, F, is applied perpendicular to the 

fiber (red). The ball (yellow) represents a magnetic particle bound to the fiber. 
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Fig. S2  Schematic illustration of extra, undesired forces (FS, FR) generated in a fiber due 

to (A) stretching and (B) bending, both of which are caused by the external force, F. 

Effect of rotation of magnetic bead 

 The bead shown in Fig. 5 may have rotated when the magnetic force was applied. 

Here, we will show that rotation of the beads would have no significant effect on the tension 

measurements. 

 Fig. S3 shows a schematic diagram of a filament and bead before and after the 

application of a magnetic force F. Fig. S3, A and B show top views and Fig. S3, C–E show 

axial views. We now consider the balance of forces and moments in 3-dimensional space. 

Since the magnetic force acting on the bead is a body force, it acts on the center of the bead. 

When a magnetic force F is applied to the bead (Fig. S3, A and C), the bead moves toward 

the tip of the magnetic needle until the magnetic force balances the tension TL and TR (Fig. 

S3 B). The method proposed for measuring tension in SFs in this study utilizes this static 

force balance. When the applied force F and tensions TL and TR are considered from the 

axial view, angular momentum is generated because F is acting along a different axis to TL 

and TR, as shown in Fig. S3 D. Thus, the bead undergoes rotation (thick black arrow in Fig. 

S3 D). Since the bead is bound to the SF, this rotation twists the SF, resulting in the 

application of a reactive moment (-Mt) to the bead by the SF in order to try to recover the 

untwisted state. Therefore, the bead rotates through an angle until this reactive moment 
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balances the moment produced by F, TL, and TR. Here, it should be emphasized that 

although the angular momentum is generated because F, TR, and TL are not acting along the 

same axis, no change occurs in the force balance. That is, no additional forces are generated. 

During rotation, the forces do not change their magnitude or direction but only their relative 

position. It should be also noted that the deformation of the filament was measured not from 

the bead displacement but from the orientations of both ends of the SF. Therefore, the 

tension measurements carried out in this study, using only the force balance, are not 

affected by rotation of the bead.   

 Furthermore, the force component causing rotation of the bead was found to be 

small. When both forces and moments are balanced by bead rotation through an angle , the 

force Ft, which is the component of F that contributes to the moment about the center of the 

SF (point O in Fig. S3 E), can be estimated. The tension TL, and TR does not generate the 

moment, and only Ft contribute to the moment (Fig. S3 E). The magnitude of the Ft was 

estimated as follows. 

 Under assumption that SFs are isotropic, linear, elastic cylindrical rod and 

incompressible, we firstly estimated the shear modulus G of the SFs from their elastic 

modulus E as  
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where the  is the Poisson's ratio and  = 0.5 under the incompressibility. 

The polar moment of inertia IP of area of SFs is 
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where rSF is cross-sectional radius of SFs. When the magnetic force was applied to the SF, 

the SFs should be twisted up to  = 90 at the maximum. The moment required to twist the 

SFs Mt is written as 
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where, L is the length of the SF. Substituting L = 2.5 µm as representative value of this 
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study and rSF = 100 nm and E = 0.5 MPa from the literature (1), Mt is estimated as 

 171061  .Mt (Nm). 

Since the radius of the magnetic beads rmb is 1.4µm, the force Ft is calculated as 

 111021  .Ft  (N). 

The force to rotate the beads Ft is only ~1% of the magnitude of the applied force F. 

Therefore, even though the bead rotates, the rotation has no significant effect on the force 

measurement since the contribution of the force is small. 

    

 

Fig. S3  Schematic illustration of balance of forces and moments for an SF bound to a 

magnetic bead (A,B: top view; C–E: axial view). Figures (A) and (C) represent the situation 

before force application and (B, D, and E) following force application. In (E), only the force 

element contributing to the moment around point O is thickly drawn. The force Ft and F 
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are components of the applied force F. 

 

Effect of existence of more anchor or bifurcation points among the observed single SF. 

Typical length of SFs measured in this study was ~10 µm. However, there might 

be thin and invisible between clearly visible SFs. We estimated the effects of such an 

existence of thin and invisible SFs on the tension measurement.  

Fig. S4 shows a schematic illustration of a thin invisible SF (SF2R) between 

visible SFs (SF1L and SF2L). If a thin SF SF2R exists, the equations of force balance among 

T1L, T2L, and T2R (* in Fig. S4) are written as 
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From Eq. S9,  

 RRLL
L

L TTT 2211
2

2 coscos
cos

1 


 .    (S10)  

By substituting Eq. S10 into Eq. S8, we obtain 
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By substituting Eq. S11 into Eq. S9, we obtain 
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If SF1L and SF2L appear as a single SF, i.e., the SF1L and SF2L appear straight, then  

LL 21   .      (S13) 

Therefore, we obtain the following equation by substituting Eq. S13 into Eqs. S11 and S12. 

02 RT  

LL TT 12  . 

This result shows that even if there are thin invisible SFs connecting the visible SFs, 

this would have no significant effect on the measured tension if the visible SF appeared 

straight.  
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Fig. S4  Schematic illustration of SFs (SF1L, SF2L, and SF2R) during application of a force 

F. At area *, a balance should exist among the tensions within SFs. 

  

 The linearity of the SF was then investigated by reducing the number of myosin 

points that were used for linear regression to determine the SF angle. Fig. S5 shows a 

tension analysis when the number of myosin points were reduced from the side furthest 

from the magnetic bead. The results show that the measured tension did not exhibit any 

unidirectional variation. If there were thin SFs between the clearly visible SFs, and the 

visible SFs were not straight (for example, if they had the typical quadratic shape of a bent 

beam), the measured tension shown in Fig. S5 should decrease with the number of points 

used because sinL and sinR in Eq. 3 increase. Therefore, we concluded that the SFs which 

we analyzed in this study were almost straight. 

 In conclusion, although the presence of thin SFs between the visible SFs is a 

possibility, they should have no significant effect on the tension if the visible SFs are almost 

straight, as we have shown to be the case. Therefore, the existence of additional anchor 

points should not seriously affect the measured tension. 
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Fig. S5  Dependence of the measured tension on the number of myosin points used for 

linear regression to determine the SF bending angle.  

 

Estimation of errors in measurement from the determination of myosin position 

To investigate the error in Fig. 5 K, we measured the distance from the actual data 

points to the fitting line, and then obtained the error by dividing this by the fitting line value. 

This analysis was performed to show that it is reasonable to assume that errors in the 

myosin position are the source of the errors in the tension measurements. Fig. S6 shows the 

error distribution obtained using all 19 measured tension data. This is a normal distribution 

with a standard deviation (SD) of about 11%. 
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Fig. S6  Percentage error distribution of T' (tensions in the original filament direction 

during force application) in Fig. 5 K. Bars represent the probability of each error occurring. 

 

 In this study, the SF angles were determined from the positions of the fluorescent 

myosin labels. The error in the myosin positions is determined using a method that assumes 

a Poisson pixel noise distribution, as reported by Sbalzarini et al (2). Based on 19 

measurements of myosin positions, the SD of the positional error was found to be ~0.1 pixel. 

Since the bending angle of the SF is determined from the positions of multiple myosins, it is 

difficult to directly determine the angular error from the myosin positional error. Therefore, 

we carried out a simulation to estimate the angular error. First, the center points of the 

myosin images obtained in this study were assumed to be the correct positions (green points 

in Fig. S7) and the resulting orientation of the SF (green line in Fig. S7) was determined as 

described in the Method section in this paper. The myosin positions were then statistically 

varied using a normal probability distribution with a SD of 0.1 pixel (red points in Fig. S7). 

The SF orientation was again evaluated (red line in Fig. S7) and the angular difference from 

the correct orientation ( in Fig. S7) was measured. This process was repeated 1000 times 

for each SF. For the 19 tension measurements, the angle  was found to be 0.0  0.57 

(mean  SD), which is the error in the SF bending angle due to myosin positional errors. 
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Since, in this study, the SFs bent by 4.1 as average under the applied magnetic force, the 

error in the measured tension is 13%, which is comparable to the error in Fig. 5 K (SD = 

11%). Therefore, the error in Fig. 5 K is thought to be mainly due to myosin positional 

errors. 

 

Fig. S7  Schematic illustration of a simulation for obtaining the angular error in the SF 

orientation due to myosin positional errors. The correct myosin positions were assumed to 

be those measured in this study. The new positions were assigned based on a normal 

probability distribution with a SD of 0.1 pixel.  
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