1 Table S1. PCR primers

Primer	Use	Sequence $(5' \rightarrow 3')$	
IC17	SAT1 flipper	GGCCCCCCCCGAGGAAGTT	
IC18	SAT1 flipper	GCTCTAGAACTAGTGGATCT	
JC57	5'NCR of CNA1	AATGATGGAGTTTATGGGAA	
JC58	5'NCR of CNA1	AACTTCCTCGAGGGGGGGGCCGAAAAAAAAAAAGGGGGGGG	
JC59	3'NCR of CNA1	AGATCCACTAGTTCTAGAGCTTTCTCTTCCTCCTCCTCCTC	
JC60	3'NCR of CNA1	TGCCCTTTTCTTTGTTTTTG	
JC61	CNA1 overlap	AACAACAATAAGGTGGATGGG	
JC62	CNA1 overlap	TATCTTACCCCTACCTGGTGG	
JC63	CNA1 ORF	GTCAGGAAATACTGTTCAACG	
JC64	CNA1 ORF	CTTCATATAATTGTTCCGA	
JC48	Disruption confirmation	ACAATCAAAGGTGGTCCT	
JC81	Disruption confirmation	AACTTCCTCGAGGGGGGGGCC	
JC82	5'NCR of CNB1	TGTTGTTGGGTAGGTTGCTGT	
JC83	5'NCR of CNB1	AACTTCCTCGAGGGGGGGGCCTTGTTGAAGTTGGATTGGTTG	
JC86	3'NCR of CNB1	AGATCCACTAGTTCTAGAGCAGCACCTGTAAGATGGTTTAG	
JC87	3'NCR of CNB1	TGTCCAAAAACGGTTTCCAG	
JC88	CNB1 overlap	TGCCTTTCTGTTCGATTGAT	
JC89	CNB1 overlap	CGACAATAATTGGAATGATGA	
JC79	CNB1 ORF	ATGGGGGCTAACGCAAGTATT	
JC80	CNB1 ORF	TTTAAGGTCAAAGTGTTGGCA	
JC100	5'NCR of CRZ1	AATATAGAGACGGTGTGTGGG	
JC101	5'NCR of CRZ1	AACTTCCTCGAGGGGGGGGCCGGACAAAATGAAATATAGC	
JC102	3'NCR of CRZ1	AGATCCACTAGTTCTAGAGCTCAACTTGTTGGTTTGTCTTT	
JC103	3'NCR of CRZ1	CTAATGTCATGACTTCCCCA	
JC104	CRZ1 overlap	TGAGACATAAAAAGGCGAC	
JC105	CRZ1 overlap	TGATCTCGATATGATTGTCC	
JC106	CRZ1 ORF	TAATCCCTATCCACAGGACGA	
JC107	CRZ1 ORF	ATCACTGGGGGAACAAAACT	
JC320	CRZ1 complementation	AAAAAACCGCGGTCAACTTGTTGGTTTGTCTTT	
JC321	CRZ1 complementation	AAAAAGAGCTCGTGATGAATCATGAGTCGGA	
JC288	CRZ1 complementation	AAGGTACCAATATAGAGACGGTGTGTGGG	
JC289	CRZ1 complementation	AAAAGCTTAGTAATTTCAACACCACTACT	
JC292	qPCR ACT1 ORF	AGCTCCAGAAGCTTTGTTCAGACC	
JC293	qPCR ACT1 ORF	TGCATACGTTCAGCAATACCTGGG	
JC345	qPCR CNA1 ORF	GCTTCACCTCATCCTTATTGGT	
JC346	qPCR CNA1 ORF	GGTGACACTGGTGTTGTTGTTT	
JC329	qPCR <i>CNB1</i> ORF	TGAAGAGATCGATAGATTGCG	
JC330	qPCR <i>CNB1</i> ORF	TTCCCGAGAATGCAGATAACC	
JC347	qPCR <i>CRZ1</i> ORF	CACAACAATGGCGATGGTAATA	
JC348	qPCR <i>CRZ1</i> ORF	ACCTTGATGCATGACTTTTCCT	
JC337	qPCR PMC1 ORF	TTGAAACAAGGTGTTGCTGAAG	
JC338	qPCR <i>PMC1</i> ORF	ATTGTGGTCCTTCCATACATGA	
JC341	qPCR <i>PMR1</i> ORF	TGAGTACCAGTATCGCTGCATT	
JC342	qPCR <i>PMR1</i> ORF	GATCACCTGTCGGGTAAGAATC	
JC362	qPCR CCH1 ORF	TGTCACTGATGAAGCTGGCAAA	
JC363	qPCR CCH1 ORF	TGATTAAGCTTAGCCACTGGTGTG	
JC364	qPCR <i>MID1</i> ORF	TGCCGTAACTATACCTCGATGTTC	
JC304	YFUR MIDI UKF	IUCUIAACIAIACCICUAIUIIC	

1 Underline indicates sequences complementary to the SAT1 flipper

2

Figure S1. C. dubliniensis CNA1, CNB1, and CRZ1 genes were disrupted with the SAT1
 flipper.

3 (A) Structure of the CNA1 disruption allele that was made by overlap PCR (see materials and 4 methods for details). PpuMI was used to digest genomic DNAs extracted from specific strains. 5 The PpuMI restriction sites are indicated 5' (-) and 3' (+) of the CNA1 gene. The probe is marked 6 as a bold line. The thick dark arrows represent the FRT sites for *FLP* recombinase. The thinner 7 arrow on a raised line represents C. albicans MAL2 promoter and the stick with a ball represents 8 C. albicans ACT1 terminator. The Southern blot is shown in the right panel. Sizes of each band 9 were labeled. The strains are WT (CD36), CNA1/cna1::SAT1-FLP (YC31), CNA1/cna1 (YC36), 10 cnal/cnal::SAT1-FLP (YC40), CNA1/cnal::SAT1-FLP (YC29), CNA1/cnal (YC73), and 11 cnal/cnal::SAT1-FLP (YC94). (B) Genomic DNA from CNB1 disruptants was digested with 12 HpaI. The strains are WT (CD36), CNB1/cnb1::SAT1-FLP (YC47), CNB1/cnb1 (YC69), 13 cnb1/cnb1::SAT1-FLP (YC87), CNB1/cnb1::SAT1-FLP (YC41), CNB1/cnb1 (YC82), and 14 cnb1/cnb1::SAT1-FLP (YC96). (C) Genomic DNA from CRZ1 disruptants was digested with 15 EcoRV. The strains are WT (CD36), CRZ1/crz1::SAT1-FLP (YC81), CRZ1/crz1 (YC102), 16 crz1/crz1::SAT1-FLP (YC107), CRZ1/crz1::SAT1-FLP (YC80), CRZ1/crz1 (YC100), and 17 *crz1/crz1*::*SAT1-FLP* (YC108).

18

Figure S2. Complementation by *CRZ1* rescues *crz1/crz1* mutants in various stresses. (A) Structure of the *CRZ1* complementation allele in plasmid pYC393 (see materials and methods for details). EcoRV was used to digest genomic DNA extracted from specific strains. The probe is marked as a red bold line. The Southern blot is shown in the right panel. Sizes of each band are labeled. The strains are WT (CD36), *crz1/crz1*::*SAT1-FLP* (YC108), *crz1/crz1* (YC280), and *crz1/crz1* + *CRZ1* (YC512). (B) Cells were grown overnight in YPD at 30°C, five-fold serially diluted, and spotted onto YPD medium containing SDS, fluconazole (FL), or CaCl₂ at the concentrations indicated. The plates were incubated at 30°C for 48 hr and photographed. (C) Cells were grown overnight and washed twice with ddH₂O. One hundred microliters containing \sim 100 cells were spread on Spider media and incubated at 37°C for 9 days. Scale bar=1 mm.

5

6 Figure S3. *C. dubliniensis* calcineurin is dispensable for growth at elevated temperature.

(A) A set of wild type and calcineurin mutants of *C. dubliniensis* and *C. neoformans* were grown
overnight at 24°C, five-fold serially diluted, and spotted onto YPD to grow for 48 hr at various
temperatures. (B) The growth curve of *C. dubliniensis* wild type and mutant strains at 30°C.
Cells were grown overnight at 30°C, washed twice with ddH₂O, diluted to 0.2 OD/ml in fresh
YPD media and incubated at 30°C with shaking at 250 rpm. The OD₆₀₀ of cultures were
measured at 0, 3, 6, 9, 24, and 30 hr. The experiments were performed in triplicate, and data was
plotted using Prism 5.03.

14

15 Figure S4. Calcineurin controls increased tolerance to new generation azoles in C. 16 dubliniensis.

Cells were grown overnight in YPD at 30°C, five-fold serially diluted, and spotted onto YPD
medium ± posaconazole (POS) or voriconazole (VOR) at the indicated concentrations. The
plates were incubated at 30°C for 48 hr and photographed.

20

Figure S5. crz1/crz1 mutants are hypersensitive to CaCl₂ at elevated temperature in C.
dubliniensis and C. albicans.

Cells were grown overnight in YPD at 30°C, five-fold serially diluted, and spotted onto YPD
 medium ± CaCl₂ at the indicated concentrations. The plates were incubated at 24°C, 30°C, and
 37°C for 48 hr and photographed.

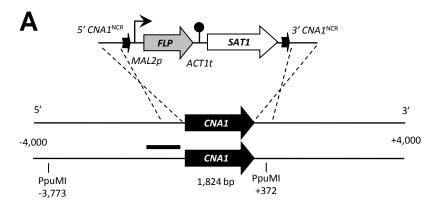
4

5 Figure S6. Calcineurin is required for germ tube formation in *C. dubliniensis* but not in *C. albicans*.

7 (A) Germ tube formation of wild type and mutant strains in liquid spider medium \pm FK506 (1 8 µg/ml) at 37°C incubated for 2 hr on 96-well polystyrene plates. Arrow heads indicate cells with 9 germ tube formation defects. Scale bar= $20 \,\mu m$. (B) Bar graph showing quantitative percentage of 10 germ tube formation in wild type and mutant strains of C. dubliniensis and C. albicans. At least 11 200 cells were evaluated in each experiment. The experiments were repeated three times, and 12 error bars represent the mean \pm SD. The asterisks represent a statistically significant difference 13 (P<0.05) between wild type and FK506 (1 µg/ml)-treated wild type, cnal/cnal, or cnbl/cnbl 14 mutants.

15

16 Figure S7. C. dubliniensis is as virulent as C. albicans in a heterologous insect model.


Survival of *G. mellonella* after injection of 10⁶ CFU/larva of *C. dubliniensis* or *C. albicans* was
similar. All infected larva died within 3 days after infection.

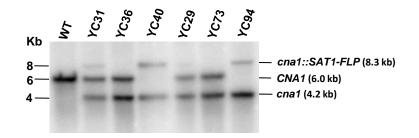
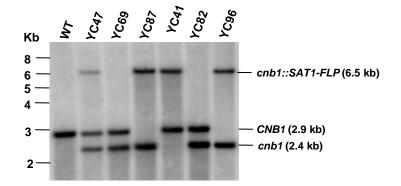
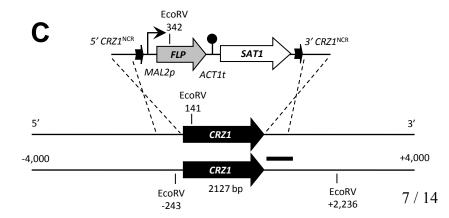
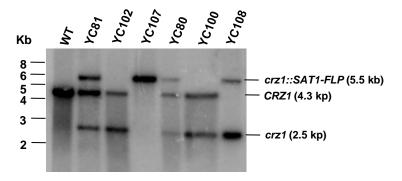
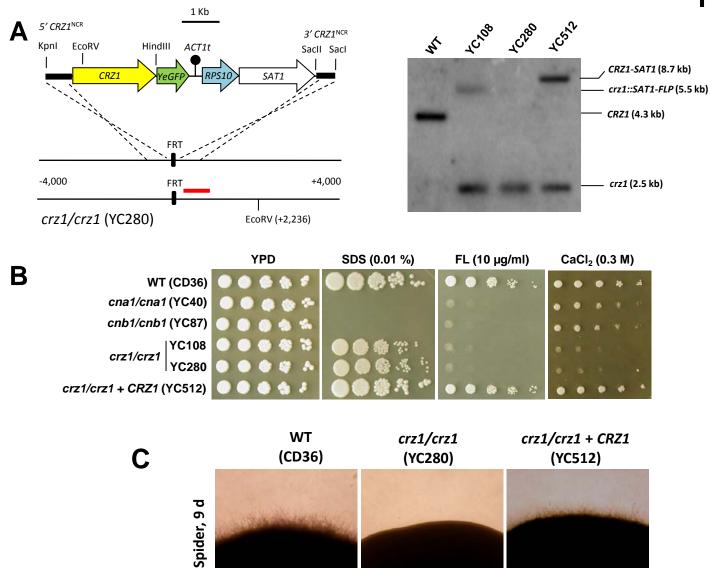

19

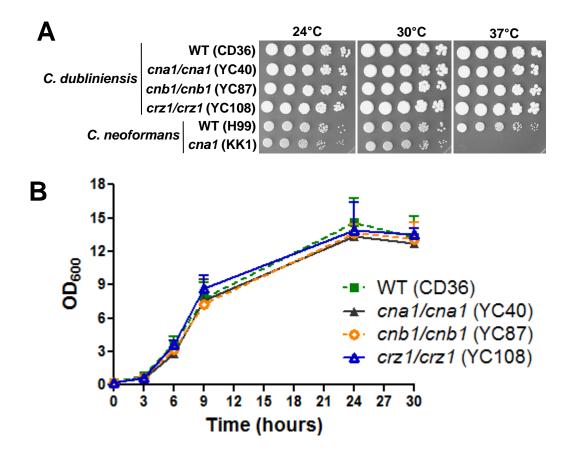
Figure S8. C. dubliniensis exhibits less hyphal growth and damage to oral epithelial cell
compared with C. albicans.

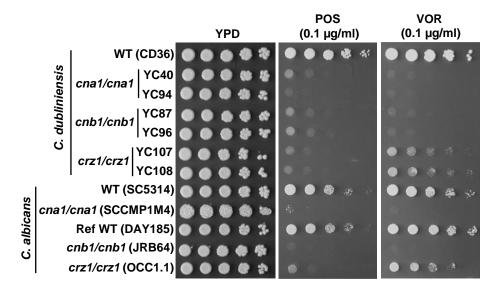

(A) FaDu oral epithelial cells were incubated with *C. dubliniensis* or *C. albicans* for 2, 4, or 6 hr,
after which the morphology was examined by differential interference contrast microscopy. Scale
bar=10 µm.

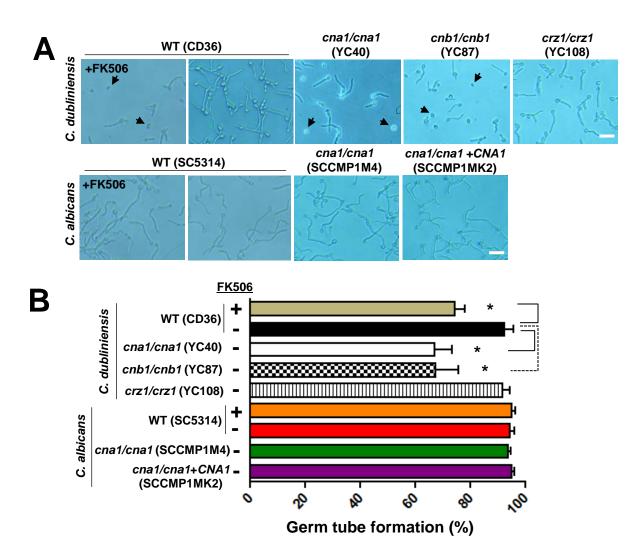

1 (**B**) FaDu oral epithelial cells were incubated with *C. dubliniensis* or *C. albicans* for 2, 4, and 6 2 hr, after which the extent of host cell damage was determined using a 51 Cr release assay. Results 3 are the mean \pm SD of three independent experiments. *P<0.05, **P<0.0005 compared with *C. albicans*. 1 Kb

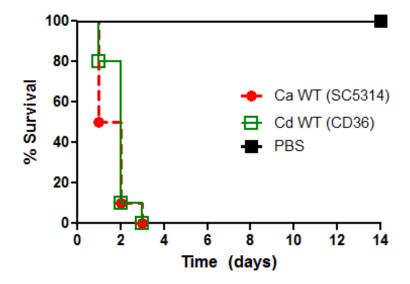


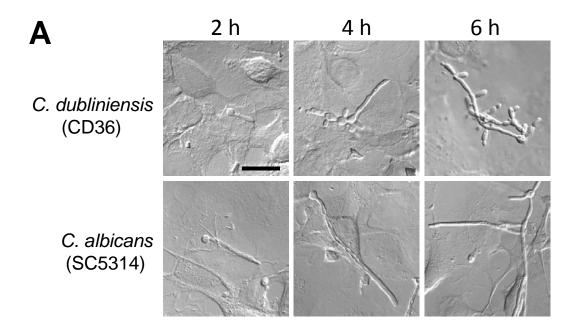




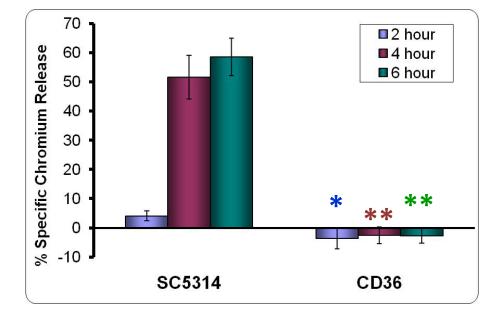



C. dubliniensis	C. albicans
WT (CD36)	WT (DAY185)
cna1/cna1 (YC40)	cnb1/cnb1 (JRB64)
cna1/cna1 (YC94)	<i>cnb1/cnb1 + CNB1</i> (MCC85)
cnb1/cnb1 (YC87)	crz1/crz1 (OCC1.1)
cnb1/cnb1 (YC96)	crz1/crz1 + CRZ1 (OCC7)
<i>crz1/crz1</i> (YC107)	WT (CAF2-1)
crz1/crz1 (YC108)	cna1/cna1 (DSY2091)
crz1/crz1 + CRZ1 (YC512)	cna1/cna1 + CNA1 (DSY2115)
	crz1/crz1 (DSY2195)
	crz1/crz1 + CRZ1 (MKY268)


₂ (0.3 M)	$CaCl_2$ (0.2 M)
----------------------	------------------


CaCl₂ (0.4 M) CaCl₂

YPD


	• • • •		
	• # .*		
• • * * * * * * *			
	• • * *	• # *	
	• * ×		37°0
			•••••
		••••	
			x • • • 7 • • • v • • • *
		• • •	
* * * * * * * *	9. iz .		2 • • • • • • • • • • • • • •
(4)	44	e a	
	s		30°C
		••• • • • • • •	
		8 * a	
	• • •		
		••••	
			🕊 P A A +
• * * 1 • • • * *		• • • •	
		• • * *	
****			••• • • • • • • • • • • • • • • • • •
		• • • • • • • • •	
		8	• • • •

