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SI Methods
Local Field Potentials (LFPs). Our LFP data were sampled at 1,000
Hz and filtered between 0.5 Hz and 100 Hz using a fourth-order
Butterworth filter. We designed the filter to have less than three
peak-to-peak ripples in the passband and at least 50-dB atten-
uation in the stopband. Given the specific properties of this filter
and the potential dampening of high gamma, we also analyzed
the data using a fourth-order Butterworth filter with a cutoff
frequency of 200 Hz. Both methods yielded highly similar results.
To remove line artifacts, we applied a digital notch at 60 Hz
(fourth-order elliptic filter, 0.1-dB peak-to-peak ripples, 40-dB
stopband attenuation; the cross-correlation between the monitor
60-Hz refresh pulses and spikes and LFPs for our entire pop-
ulation failed to find a signature of locking). All filtering was
applied by using forward and backward filtering to obtain zero
phase shifts. To correct for the time delays induced in the LFP
signals by the filters in headstages and preamplification boards
we used the software correction FPAlign provided by Plexon
(http://www.plexon.com/downloads.html). We discarded all
LFPs that had more than three points outside the mean ± 4 SD
to avoid influence of irregular artifact noise from muscle activity
or other sources. We assessed whether LFPs are selective for
orientation and whether adaptation affects LFP amplitude tun-
ing by performing a trial-by-trial ANOVA.

Current-Source Density. For each recording session, we verified the
laminar position of the electrode contacts by computing the
evoked response potential (ERP) profile for brief visual stimu-
lation during a passive fixation task. Briefly, monkeys were ex-
posed to a full-field black screen that flashed white for 100 ms
and then returned to black. The local field potential (LFP) time-
series was recorded using 16-channel laminar probes. Fluctuation
changes in LFP amplitude, in response to the white flash, were
processed to obtain ERP traces for each contact (ERPs were
recorded for 100 trials) (1, 2). We computed the current-source
density (CSD) according to the second spatial derivative of the
LFP time-series across laminar contacts (100-μm spacing) using
the iCSD toolbox for MATLAB (http://software.incf.org/software/
csdplotter/home) (3, 4). This analysis allowed us to accurately
identify the polarity inversion accompanied by the sink-source
configuration at the base of layer 4 (the sink is inside layer 4).
Using homemade MATLAB programs we analyzed the laminar
CSD profile to verify the presence of a primary sink in the
granular layer in each of the 20 recording sessions. This was
accomplished by locating the sink-driven negative polarity in the
CSD plot and then computing the center of mass of the granular
sink. We obtained a single coordinate from this analysis, con-
sisting of the contact number and the time (in ms) when the sink
was largest (center of mass). The contact with the largest sink
center of mass served as the granular layer reference at 0 μm. We
then analyzed all of the contacts above and below the reference
and grouped them (according to their sink/source waveform
characteristics; Fig. S2) into one of three possible layers: su-
pragranular, granular, and infragranular.
In addition, several controls were performed to validate our

method for identifying cortical layers: (i) we observed that mi-
crometer advancement of the laminar electrode was highly cor-
related with a corresponding shift in the center of mass of the
granular sink (r = 0.89, P = 0.0001, Pearson correlation); (ii)
shuffling electrode contacts as a function of cortical depth de-
stroyed the laminar-specific CSD profile; and (iii) vertical pen-
etrations across cortical layers revealed a highly consistent

columnar organization based on the orientation preference of
the LFPs (Fig. S3).

Neuronal Discrimination. As a measure of neuronal discrimination
performance, we calculated the neurons’ capacity (d′) to dis-
criminate between orientations within 22.5° of the cell’s pre-
ferred orientation as the difference between the mean spike
rates (μθ±22.5 and μθ) at the two nearby orientations divided by
the root mean square SD (σθ±22.5 and σθ) (5, 6).
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These measures, mean firing rate and response SD, were cal-
culated from the trial-by-trial mean responses during the entire
300-ms presentation of the test stimulus in each condition
(control and adaptation). Mean d′ was calculated by averaging
the d′ values obtained for each test orientation pair around the
preferred orientation, θ (i.e., θ ± 22.5°).

Coefficient of Variation (CV). As a measure of neuronal precision,
we calculated the variation in the neurons’ interspike interval
(ISI) between test orientations within 22.5° of the cell’s preferred
orientation. CV was computed as follows:

σISI
ISI

: [2]

These measures, SD of the ISI and mean ISI, were calculated
from the trial-by-trial responses during the entire 300-ms pre-
sentation of the test stimulus in each condition (control and
adaptation). Mean CV was calculated by averaging the CV values
obtained for each test orientation pair around the preferred
orientation, θ (i.e., θ ± 22.5°) (Fig. S8).

Spike-Field Coherence (SFC). We used multitaper spectral analysis
to compute SFC, which measures the degree of synchronization
between neurons and LFPs as a function of frequency. In general,
the coherence between two signals (x and y) recorded at different
sites is a complex quantity whose magnitude is a measure of the
phase synchrony for frequency f.
Coherence is an absolute value that varies between 0 and 1

(e.g., a value of 1 indicates a perfect phase relationship between
the firing of the spikes to the fluctuations of the LFP). Coherence
is defined as:

Cyxð f Þ ¼ Syxð f Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxð f ÞSyð f Þ

p ; [3]

where Sx (f) and Sy (f) represent the auto-spectra and Syx (f) the
cross-spectrum of the two signals x and y. Auto-spectra and
cross-spectra are averaged across trials before the coherency
calculation (7, 8). In an attempt to eliminate any bias from dif-
fering sample sizes, the same number of trials for each condition
(adaptation and control) was used for the calculation of co-
herence for a given pair. Importantly, the length of data included
in each condition was also constant.
Specifically, we used the Chronux function coherencycpt, which

computes the multitaper SFC for a continuous signal (LFP) and
point process data (spike-train) according to an optimal family of
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orthogonal tapers derived from Slepian functions (7–10). The
number of tapers was calculated according to the formula:

K ¼ 2∗TW − 1; [4]

where K is the highest number of tapers that can be used while
preserving optimal time-frequency concentration of the data
windowing available from the Slepian taper sequences, T is the
length of the data in seconds, and W is the half-bandwidth of the
multitaper filter. For our analysis we applied spectral smoothing
of ±10 Hz for frequencies >30 Hz and ±4 Hz for lower fre-
quencies. These methods have now been successfully applied to
neural data in a number of cases (7–10).

Eye Movements. Stimulus presentation and eye position moni-
toring were recorded and synchronized with neuronal data using
the Experiment Control Module programmable device (FHC).
Eye position was continuously monitored using an eye tracker
system (EyeLink II; SR Research) with a binocular 1-kHz sam-
pling rate. Eye position was calibrated before each experiment
using a five-point calibration procedure in which the animal was

required to fixate on each point (one in the center, two in the
vertical, and two in the horizontal axes or the diagonals) in steps
of 4°, 8°, and 12° from the central fixation spot. The eye-tracker
gains were adjusted such as to be linear for the horizontal and
vertical eye deflections. The fixation pattern was analyzed to rule
out any systematic bias and inconsistency during fixation when
identical stimuli were presented in different conditions (control
and adaptation). Microsaccades were analyzed every 10 ms by
using a vector velocity threshold of 10°/s (this corresponds to
a 0.1° eye movement between consecutive 10-ms intervals). To
rule out any systematic bias and inconsistency during the control
and adaptation conditions, we analyzed the eye position on the x
and y axes, as well as the number and speed of microsaccades
(these measures did not depend significantly on stimulus con-
dition). The changes induced by adaptation are uncontaminated
by fixational eye movements: we found no statistically significant
relationship between the horizontal/vertical saccade amplitude
and frequency and stimulus condition (control vs. adaptation;
P > 0.2, Wilcoxon signed-rank test for all comparisons).
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Fig. S2. Identification of cortical layers through current source density analysis. To identify cortical layers, we measured the ERP during a passive fixation task
while monkeys were exposed to a full-field black screen that flashed white (≈1 Hz) for 100 ms and then returned to black. CSD (according to the second spatial
derivate of the LFP time-series) was calculated to identify the polarity inversion accompanied by the sink-source configuration at the base of the granular layer.
This analysis provides a more exact physiological assessment of the changes in neuronal excitability that forms the basis of the LFP signal. We assessed how
stably the identification of cortical layers is maintained over time (left to right). In these examples, each plot represents the average CSD of those contacts
assigned to a given layer. This allowed us to determine the precise timing of the initial sink (≈50–60 ms; the sink is inside layer 4; compare Fig. 1 B in main text)
and compute the sink center of mass. CSD trace envelopes represent SD, and black bars indicate the duration of the flashed stimulus (100 ms).

Fig. S1. Multicontact laminar electrode. Using multicontact laminar electrodes, we recorded simultaneously spiking activity from isolated individual neurons
and LFP units across cortical layers of V1. Each probe consists of 16 equally spaced (100 μm) electrode contacts spanning a total length of 1.6 mm. Each
electrode contact is 25 μm in diameter and is composed of platinum iridium. In half of the recording sessions, the laminar probe was treated with a carbon
nanotube coating. The coating reduced the impedance by a factor of 25 without altering the area, resulting in an improvement in the signal-to-noise for both
spikes (high-frequency band) and LFPs (low-frequency band).
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Fig. S3. Mean difference in preferred orientation across cortical layers for individual sessions. We first identified the tuning properties of local field potentials
for each contact. For each recording session we averaged the differences in preferred orientation [determined using the vector averaging method (1–3)]
between pairs of contacts. For more than 68.42% of sessions, the mean difference in orientation preference across pairs of contacts was within 10°. This
indicates that the advancement of the laminar electrode remained isolated to a single cortical column in V1. *P = 0.0002, Wilcoxon signed-rank test.

Fig. S4. Single unit isolation on the laminar electrode. (A and B) Two representative examples of electrode contacts in which individual neurons were isolated.
Analysis consisted of using Plexon’s Offline Sorter software package, which uses principal component analysis (PCA). Distinct clusters were identified based on
spike waveform properties such as the weight of the first and second principal components (Left). In these examples, we have identified two units isolated on
each channel and displayed their average waveform and SD (Right).

1. Dragoi V, Sharma J, Miller EK, Sur M (2002) Dynamics of neuronal sensitivity in visual cortex and local feature discrimination. Nat Neurosci 5:883–891.
2. Dragoi V, Sharma J, Sur M (2000) Adaptation-induced plasticity of orientation tuning in adult visual cortex. Neuron 28:287–298.
3. Gutnisky DA, Dragoi V (2008) Adaptive coding of visual information in neural populations. Nature 452:220–224.

Hansen and Dragoi www.pnas.org/cgi/content/short/1102017108 4 of 6

www.pnas.org/cgi/content/short/1102017108


Fig. S6. Adaptation increases SFC for lower-frequency bands. (A) For the analysis of lower frequencies we used the multitaper method, in which we computed
spike-triggered averages by averaging the LFP signal and applying ±4 Hz smoothing for frequencies <30 Hz (±10 Hz for frequencies >30 Hz). We observed
no difference in SFC across cortical layers during the presentation of the control stimulus. (B) Adaptation increases SFC across all cortical layers between 0 and
30 Hz, with the largest increase occurring in supragranular and granular layers. (C) Percentage SFC change between adaptation and control was calculated
separately for frequencies <30 Hz and for frequencies >30 Hz. For all traces in control and adaptation, shaded regions represent SEM.

Fig. S5. Postadaptation change in gamma-band SFC is statistically significant only for test orientations within 45° of the adapting stimulus. SFC was calculated
using the 300-μm pooling scheme (compare Fig. 4 A and B, main text). Changes in SFC after adaptation (calculated by averaging the SFC values across layers)
were statistically significant only when the absolute difference between the preferred orientation (PO) of the cells and LFPs for a given penetration and the
corresponding adapting stimulus (Δθ) was <45° (*P < 0.05, Wilcoxon signed-rank test), consistent with previous studies (1, 2).
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Fig. S7. “Within-layer” pooling scheme: the layer-specific relationship between the postadaptation changes in gamma synchronization and neuronal dis-
crimination performance. (A–C) There is a significant positive correlation between the gamma-band SFC after adaptation and the change in d′ that is specific
to the supragranular layer (r = 0.34, P = 0.04, Pearson correlation). In contrast, granular and infragranular layer cells exhibited postadaptation changes in
discriminability that were independent of the changes in SFC (granular: r = 0.07, P = 0.73; infragranular: r = 0.10, P = 0.67, Pearson correlation).

Fig. S8. Layer-specific relationship between gamma synchronization and neuronal precision. In addition to changes in discrimination performance after
adaptation, we also measured neuronal precision by estimating the variation in the interspike interval as the coefficient of variation (1–3) (CV = SD/mean
interspike interval). We found that only the recording sites in the supragranular layers were associated with a significant correlation between the post-
adaptation change in CV and the corresponding change in SFC (A; r = −0.36, P = 0.03, Pearson correlation). In contrast, neurons in granular and infragranular
layers exhibited postadaptation changes in precision that were independent of the changes in SFC (B and C; granular: r = −0.18, P = 0.38; infragranular: r =
−0.02, P = 0.93, Pearson correlation). Colored lines represent the linear regression fits associated with each cortical layer.
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