
1

Rate-Independent Constructs for Chemical Computation
Phillip Senum, Marc Riedel
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota,
United States
E-mail: { senu0004, mriedel }@umn.edu

Appendix: Raise-to-a-Power Reactions

We present chemical reactions that implement the pseudo-code presented in the text.

System Initialization We assume that an external source injects some quantity of begin at the outset.
This type is immediately is split into two types, g1 and g7, which will be used to copy x to y (for the
line of code y = x) and to decrement p (for the line of code p = p - 1), respectively. This initializations
takes care of the steps before the first while statement.

begin
fast−−→ g1 + g7 (1)

Copy x to y
[
g1
]

x + g1
slow−−−→ xy + g1 (2)

g1 + xab
slow−−−→ ∅ (3)

xy + g1ab
slow−−−→ x + y (4)

Loop Restart Our condition for restarting the main loop is that we still have p present in the system,
and that we are not currently somewhere in the middle of the loop. The chemical type done is produced
at the end of each loop from reactions 63 through 75 below. We also will wait until our post-loop cleanup
in reactions 76 through 78 below is complete. At the start of each loop, we produce an injection of g2

and g7; these initiate the loop.

stab + cycab + g6ab

+stgoab + done + p
slow−−−→ goP + done + p (5)

goP + st
fast−−→ st (6)

goP + cyc
fast−−→ cyc (7)

goP + g6
fast−−→ g6 (8)

goP + stgo
fast−−→ stgo (9)

goP
slow−−−→ go + stgo (10)

go
fast−−→ g2 + g7 (11)

w + done
fast−−→ w (12)

xw + done
fast−−→ xw (13)

cyc + stgo
slow−−−→ cyc (14)



2

Copy x to w (once each loop)
[
g2
]

First, we take care of w = x.

x + g2
slow−−−→ xw + g2 (15)

xab + g2
slow−−−→ ∅ (16)

g2ab + xw
slow−−−→ x + w (17)

Loop-Running Indicator We produce a chemical type cyc whenever we are executing a loop. This
is to ensure that our modules will not inadvertently fire when we do not wish them to do so.

w
slow−−−→ w + cyc (18)

2 cyc
fast−−→ cyc (19)

Multiply Loop Start The inner while loop is our multiply operation, handled by the next three
groups of reactions.

w + w′
ab + ydab

slow−−−→ w + g34P (20)

g34P + w′ fast−−→ w′ (21)

g34P + yd
fast−−→ yd (22)

g34P
slow−−−→ g3 + g4 (23)

Copy y to d (multiply loop)
[
g3
]

y + g3
fast−−→ yd + g3 (24)

g3 + yab
slow−−−→ ∅ (25)

g3ab + yd
slow−−−→ y + d (26)

Decrement w
[
g4
]

w + g4
fast−−→ w′ + g4 (27)

g4 + wab
slow−−−→ ∅ (28)

g4ab
slow−−−→ g′4ab (29)

2 w′ + g′4ab
fast−−→ w′ + w + wrx (30)

wrx slow−−−→ ∅ (31)

w′ + wrx
ab + g′4ab

slow−−−→ ∅ (32)

2 g′4ab
slow−−−→ g′4ab (33)

g′4ab + g4
fast−−→ g4 (34)



3

End of Multiply Detection Once the multiplication operation has completed, we produce g5, en-
abling the next step:

wab + w′
ab + g2ab

+xwab + stab + doneab
slow−−−→ g5P (35)

g5P + w
fast−−→ w (36)

g5P + w′ fast−−→ w′ (37)

g5P + g2
fast−−→ g2 (38)

g5P + xw
fast−−→ xw (39)

g5P + st
fast−−→ st (40)

g5P + done
fast−−→ done (41)

g5P + cyc
slow−−−→ g5 + cyc (42)

Clear y
[
g5
]

We must take care of the lines y = d and d = 0. First, we clear our previous quantity of
y.

g5 + y
slow−−−→ g5 (43)

yab + g5
slow−−−→ ∅ (44)

Inhibit production of g5 We stop production of g5 so that we may preserve the quantity of y that
we are going to receive from d.

yab + ydab
slow−−−→ stP (45)

stP + y
fast−−→ y (46)

stP + yd
fast−−→ yd (47)

stP + g5
slow−−−→ st + g5 (48)

Set y to d
[
g6
]

Finally, we transfer d to y, clearing d in the process.

yab + g5ab + ydab
slow−−−→ g6P (49)

g6P + y
fast−−→ y (50)

g6P + g5
fast−−→ g5 (51)

g6P + yd
fast−−→ yd (52)

g6P + d + st
slow−−−→ g6 + d + st (53)

g6 + d
slow−−−→ g6 + y (54)



4

Decrement p
[
g7
]

The decrement of p is used several in two distinct cases, but we only need one
instance of the module for our system.

p + g7
fast−−→ p′ + g7 (55)

g7 + pab
slow−−−→ ∅ (56)

g7ab
slow−−−→ g′7ab (57)

2 p′ + g′7ab
fast−−→ p′ + p + prx (58)

prx
slow−−−→ ∅ (59)

p′ + prxab + g′7ab
slow−−−→ ∅ (60)

2 g′7ab
slow−−−→ g′7ab (61)

g′7ab + g7
fast−−→ g7 (62)

End-of-Loop Detection We know that we have finished a loop when all operations within and prior
to the loop have completed.

ydab + dab + goab + g2ab

+xwab + beginab + g1ab

+xyab + g7ab + p′ab
slow−−−→ doneP (63)

doneP + yd
fast−−→ yd (64)

doneP + d
fast−−→ d (65)

doneP + go
fast−−→ go (66)

doneP + g2
fast−−→ g2 (67)

doneP + xw
fast−−→ xw (68)

doneP + begin
fast−−→ begin (69)

doneP + g1
fast−−→ g1 (70)

doneP + xy
fast−−→ xy (71)

doneP + g7
fast−−→ g7 (72)

doneP + p′
fast−−→ p′ (73)

doneP
slow−−−→ done (74)

2 done
fast−−→ done (75)

Post-Loop Cleanup Finally, we reset the system back to its initial state.

st + done
fast−−→ done (76)

g6 + done
fast−−→ done (77)

cyc + done
fast−−→ done (78)



5

Absence Indicators

Twenty-five absence indicators are used by the reactions above. They are generated by the method
outlined in the paper and omitted here to save space.


