
Supplementary Table 1

Dataset Num. Num. Database Dataset Num. Num. Database
Name Spectra Clusters Size Name Spectra Clusters Size

1 A. dehalogenans 120.5 K 56.3 K 1.5 M 67 Monkeypox virus3 3.8 M 2.6 M 0.2 M
2 A. fumigatus 21.0 K 18.4 K 4.5 M 68 N. Crassa 185.0 K 134.0 K 5.5 M
3 A. mirum 752.6 K 608.3 K 2.2 M 69 N. dassonvillei 674.6 K 527.6 K 1.8 M
4 A. nidulans 583.6 K 175.7 K 4.9 M 70 N. multipartita 481.9 K 386.3 K 1.7 M
5 A. niger 6.8 M 4.3 M 6.2 M 71 O. bacterium TAV2 781.2 K 442.9 K 1.5 M
6 A. phagocytophilium 757.4 K 571.3 K 0.3 M 72 O. cuniculus 145.2 K 118.6 K 8.0 M
7 A. robiniae 793.6 K 679.1 K - 73 P. aeruginosa 103.7 K 98.1 K 1.9 M
8 A. thaliana 943.4 K 597.9 K 19.7 M 74 P. carbinolicus 170.8 K 141.6 K 1.1 M
9 A. variabilis 1.4 M 1.0 M 1.9 M 75 P. chrysosporium 526.7 K 383.9 K 83.6 K
10 Arthrobacter 2.2 M 1.1 M 1.5 M 76 P. falciparum 2.0 M 1.2 M 7.1 M
11 BATS1 1.3 M 1.1 M 1.8 M 77 P. fluorescens 2.4 M 1.7 M 6.6 M
12 B. Taurus 3.4 M 2.3 M 15.9 M 78 P. minatonensis 545.6 K 450.8 K 1.0 M
13 B. anthracis Sterne 1.2 M 0.9 M 1.5 M 79 P. placenta 16.2 K 14.8 K 3.9 M
14 B. burgdorferi 828.2 K 541.6 K 0.4 M 80 P. promelas 163.3 K 105.8 K 29.2 K
15 B. faecium 671.1 K 553.9 K 1.1 M 81 P. ubique 1.7 M 1.2 M 0.9 M
16 B. mallei 1.4 M 0.9 M 15.1 M 82 Periphyton4 2.2 M 1.4 M -
17 C. aurantiacus 406.8 K 344.6 K 1.4 M 83 P. trichocarpa 3.7 M 2.1 M 15.5 M
18 C. crescentus 8.2 M 4.3 M 1.2 M 84 Prochlorococcus 777.4 K 565.2 K -
19 C. curtum 400.7 K 355.2 K 0.5 M 85 R. capsulatus 937.8 K 658.9 K 0.2 M
20 C. elegans 413.7 K 300.8 K 19.3 M 86 R. castenholzii 278.3 K 247.6 K 1.6 M
21 C. flavigena 1.1 M 0.8 M 1.2 M 87 R. norvegicus 1.5 M 1.0 M 17.1 M
22 C. griseus 292.0 K 242.5 K 0.2 M 88 R. palustris 3.0 M 2.2 M 1.6 M
23 C. symbiosum 459.0 K 410.1 K 0.6 M 89 R. pickettii 1.3 M 0.9 M 1.5 M
24 C. synechocystis 1.1 M 0.6 M 1.1 M 90 R. sphaeroides 11.0 M 5.9 M 5.5 M
25 C. tepidum WT 171.1 K 146.5 K 0.6 M 91 S. Typhi 3.1 M 1.5 M 1.4 M
26 C. thermocellum 24.3 K 22.3 K 1.0 M 92 S. amazonensis 1.0 M 0.6 M 1.3 M
27 C. thermophilum 243.3 K 205.3 K 0.8 M 93 S. baltica OS155 5.4 M 2.3 M 1.4 M
28 Cyanothece2 8.5 M 4.7 M 1.6 M 94 S. baltica OS185 1.5 M 1.1 M 1.5 M
29 Cyanothece PCC7424 396.8 K 335.2 K 1.6 M 95 S. baltica OS195 542.4 K 372.8 K 1.5 M
30 Cyanothece PCC7425 432.4 K 348.0 K 1.6 M 96 S. baltica OS223 478.8 K 394.4 K 1.5 M
31 Cyanothece PCC7822 61.5 K 55.4 K 1.6 M 97 S. cerevisiae 5.9 M 4.1 M 3.3 M
32 Cyanothece PCC8801 216.0 K 176.2 K 1.6 M 98 S. denitrificans OS217 1.0 M 0.6 M 1.3 M
33 D. desulfuricans 3.2 M 1.8 M 0.8 M 99 S. frigidmarina NCIMB 400 587.7 K 368.2 K 1.4 M

Table 1 (part I) Information about distribution of spectra among species represented in the PNNL datasets.
For each species we note the number of spectra (after quality filtration), the number of clusters that
contained these spectra, and the number of amino acids in the corresponding protein database (if available).
About a quarter of the data consisted of spectra from quality control runs, or experiments for which we
could not link spectra to a specific species; these were grouped as the Miscellaneous (bottom of the table).
1 BATS is a seawater microbial community from the Bermuda Atlantic; 2 mixture of 6 cyanothece strains
(the database size refers to Cyanothece sp. ATCC51142); 3 the Human monkeypox virus sample contains
both virus proteins and human proteins; 4 mixture of algae, cyanobacteria, heterotrophic microbes, and
detritus;

Table 1 describes the PNNL dataset used in our experiments. We collected ≈ 1.18 billion MS/MS
spectra from over 100 organisms (referred to as the PNNL dataset). This data set was compiled by pooling
the ion trap spectra that have been generated at the Richard Smith laboratory at PNNL in 2001-2009.
The data was mostly generated on LCQ, LTQ, LTQ-FT and LTQ-Orbitrap instruments. A complete list
of all datasets (originating from 134 species) is given in Table 1. The PNNL dataset contains 130.54
million human spectra (after spectral quality filtration) organized into 56.11 million clusters. The Table
also provides the size of the corresponding proteome (if available). We remark that spectra from a single
peptide may generate multiple clusters (see [6]) and that clusters containing spectra from several organisms
contribute to multiple rows in the Table.
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Dataset Num. Num. Database Dataset Num. Num. Database
Name Spectra Clusters Size Name Spectra Clusters Size

34 D. melanogaster 688.0 K 409.3 K 12.4 M 100 S. fumaroxidans 540.5 K 443.1 K 1.3 M
35 D. peptidovorans 482.2 K 411.2 K 0.8 M 101 S. heliotrinireducens 654.2 K 550.1 K 0.9 M
36 D. proteobacterium NaphS2 1.1 M 0.6 M - 102 S. keddieii 452.9 K 364.6 K -
37 D. radiodurans 5.3 M 3.3 M 0.9 M 103 S. nassauensis 801.3 K 615.6 K 2.0 M
38 D. vulgaris 1.8 M 1.1 M 1.1 M 104 S. oneidensis 43.2 M 22.2 M 1.4 M
39 E. caballus 17.8 K 15.7 K 12.7 M 105 S. putrefaciens 200 562.5 K 362.2 K 1.3 M
40 E. chaffeensis 802.9 K 627.8 K 0.3 M 106 S. putrefaciens CN-32 664.2 K 413.8 K 1.3 M
41 E. coli 16.3 M 8.6 M 1.3 M 107 S. thermophile 851.1 K 677.3 K -
42 E. coli BL21 1.0 M 0.7 M 1.3 M 108 S. trabarsenatis ANA-3 504.3 K 347.0 K 1.5 M
43 F. graminearum 95.9 K 66.5 K 0.3 M 109 S. typhimurium 13.8 M 7.0 M 1.4 M
44 G. gallus 18.9 K 15.0 K 10.8 M 110 S. viridis 264.8 K 234.8 K 1.2 M
45 G. max 3.6 M 2.6 M - 1 111 Sea Sediments3 806.0 K 583.6 K -
46 G. metallireducens 1.4 M 1.0 M 1.2 M 112 Shewanella MR-4 539.5 K 356.5 K 1.3 M
47 G. sulfurreducens 6.1 M 3.0 M 1.1 M 113 Shewanella MR-7 525.0 K 357.5 K 1.4 M
48 G. uraniumreducens 1.6 M 1.2 M 1.4 M 114 Shewanella PV-4 666.3 K 410.1 K 1.3 M
49 H. borinquense 323.9 K 264.1 K 1.1 M 115 Shewanella W3-18-1 689.8 K 420.2 K 1.3 M
50 H. modesticaldum 312.6 K 255.5 K 0.9 M 116 Shewanella spp4 7.9 M 4.8 M -
51 H. sapiens 122.8 M 64.1 M 34.2 M 117 Synechococcus5 1.1 M 0.8 M 1.0 M
52 H. utahensis 456.4 K 359.5 K 0.9 M 118 T. bispora 340.3 K 292.8 K -
53 Human Cytomegalovirus 348.6 K 254.8 K 66.2 K 119 T. elongatus 8.5 K 8.1 K 0.8 M
54 I. scapularis 92.1 K 86.2 K 5.9 M 120 T. pallidum 31.0 K 29.1 K 0.3 M
55 J. gansuensis 670.3 K 609.7 K 4.0 M 121 T. pseudonana 49.1 K 44.8 K 5.9 M
56 K. radiotolerans SRS30216 2.1 M 1.1 M 1.5 M 122 T. reesei 6.0 M 3.0 M 77.0 K
57 Leaf Cutter Ant2 1.0 M 0.7 M - 123 T. terrestris 640.4 K 497.3 K -
58 M. barkeri 581.9 K 427.5 K 1.1 M 124 Termite Comm.6 677.6 K 504.3 K -
59 M. grisea 41.4 K 30.1 K 6.1 M 125 Vaccinia virus 1.8 M 1.4 M 0.8 M
60 M. hungatei 382.0 K 297.8 K 1.0 M 126 X. cellulosilytica 1.8 M 1.3 M 1.2 M
61 M. magneticum 24.1 K 22.6 K 1.5 M 127 Y. enterocolitica 584.1 K 374.8 K 1.5 M
62 M. musculus 57.2 M 29.9 M 25.6 M 128 Y. pestis 1.3 M 1.0 M 1.2 M
63 M. musculus B16 115.4 K 105.2 K 25.6 M 129 Y. pestis CO92 260.7 K 106.3 K 1.2 M
64 M. musculus cortical neuron 14.8 K 14.1 K 25.6 M 130 Y. pseudotuberculosis 1.3 M 0.8 M 1.3 M
65 Macaque 2.9 M 2.1 M 17.5 M 131 Miscellaneous 155.4 M 80.6 M -
66 Microbial Communities 218.9 K 181.8 K -

Table 1: (part II) Information about distribution of spectra among species represented in the PNNL
datasets. For each species we note the number of spectra (after quality filtration), the number of clusters
that contained these spectra, and the number of amino acids in the corresponding protein database (if
available). About a quarter of the data consisted of spectra from quality control runs, or experiments for
which we could not link spectra to a specific species; these were grouped as the Miscellaneous (bottom
of the table). 1 The proteome of G. max (soybean) is not yet available; 2 microbial community from
leaf cutter ants; 3 seawater microbial community; 4 microbial community of 7 unsequenced Shewanella
species; 5 mixture of two cyanobacteria (Synechococcus sp PCC7002 and Synechococcus sp CC9605); 6

termite hindgut microbial community.
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Supplementary Table 2

Cluster Num. (%) Total Number of 𝑘-clusters
size spectra clusters 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5+

1 277,602,847 47.75% 277,602,847 277,602,847 0 0 0 0
2 17,622,936 3.03% 8,811,468 7,737,404 1,074,064 0 0 0
3 9,071,289 1.56% 3,023,763 2,454,196 466,225 103,342 0 0
4 6,742,092 1.16% 1,685,523 1,304,746 272,307 89,122 19,348 0
5 5,471,735 0.94% 1,094,347 812,204 183,272 70,444 23,882 4,545
6 4,830,618 0.83% 805,103 574,355 140,380 57,329 24,034 9,005
7 4,323,172 0.74% 617,596 424,876 111,022 47,040 22,389 12,269
8 3,940,240 0.68% 492,530 328,909 90,048 39,291 19,823 14,459
9 3,127,068 0.54% 347,452 227,651 64,649 28,319 14,437 12,396
10 3,071,200 0.53% 307,120 195,040 58,264 26,032 13,908 13,876
11-15 13,331,219 2.29% 1,045,276 620,121 203,528 96,009 53,349 72,269
16-20 10,004,260 1.72% 560,189 298,993 113,622 56,581 32,509 58,484
21-30 19,567,013 3.37% 780,185 356,144 161,911 87,196 51,521 123,413
31-40 16,953,805 2.92% 482,297 187,312 99,543 57,215 35,564 102,663
41-50 14,445,101 2.48% 319,597 108,296 65,754 39,408 24,581 81,558
51-100 49,289,878 8.48% 701,979 181,478 137,699 90,644 59,656 232,502
101-200 47,775,465 8.22% 346,890 51,614 56,733 45,015 32,474 161,054
201-500 41,965,665 7.22% 144,107 10,264 14,971 15,727 13,052 90,093
500+ 32,184,809 5.54% 32,192 934 1,105 1,672 1,823 26,658
Total 581,320,412 100.00 299,200,461 293,477,384 3,315,097 950,386 442,350 1,015,244

Table 2: Clustering of the PNNL dataset. The set of ≈ 1.18 billion spectra was first reduced to 581 million
spectra that passed quality filtering and grouped into ≈ 299 million clusters. The table holds the number
of spectra in clusters of different sizes and also lists how many of those clusters included spectra from
multiple organisms. A 𝑘-cluster is defined as a cluster with spectra from exactly 𝑘 organisms (similarly, a
𝑘+-cluster includes spectra from at least 𝑘 organisms).
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Figure 1: Comparison between the construction (left) and use (right) of spectral libraries and spectral
archives. Spectral archives utilize all spectra either as identified or unidentified clusters while spectral
libraries discard unidentified spectra. New spectra that are searched against an archive can result in
either a PSM (when matched against an identified cluster) or an SSM (when matched with an unidentified
cluster). Unmatched spectra in an archive search are used to created new spectral clusters. Since spectral
libraries only utilize PSMs, the majority of the spectra remain unassigned.

Supplementary Note 1 - Spectral Archives Complement Spectral Libraries

Most mass spectrometry studies attempt to identify Peptide-Spectrum Matches (PSMs) and often ignore
Spectrum-Spectrum Matches (SSMs) if PSMs for these SSMs are not established. We argue that SSMs are
also useful (even if the corresponding peptide is not identified) since they allow to cross-reference spectra
generated by different researchers and to query all spectra ever generated against a single repository.

Spectral libraries are essentially databases of PSMs while spectral archives are databases of both PSMs
and SSMs. While construction of PSMs (via MS/MS database search) is a well-studied topic, construction
of all SSMs represents a formidable clustering problem. Fig. 1 reveals similarities and highlights the
differences between construction (Fig. 1 left) and use (Fig. 1 right) of spectral libraries and spectral
archives.

With an archive we first cluster, then search the clusters against a protein database to generate Peptide-
Cluster Matches (PCMs). These PCMs in turn get propagated to all spectra in the identified clusters to
generate PSMs. With the library, we first search the spectra against a protein database to generate PSMs,
group PSMs corresponding to the same peptide, and finally deposit the curated consensus PSM in the
spectral library. The spectral library can then be used to identify spectra from new spectral datasets (but
cannot identify new peptides).

To illustrate the similarities between the two approaches, we analyzed a dataset from the human
HEK293 kidney cell line [13] with ≈ 0.75 million spectra. A traditional database search of this dataset
with InsPecT [14] against the IPI human database at 1% FDR identified 96536 spectra from 20828 peptides
and 5332 proteins. The spectral archive of this dataset includes ≈ 0.34 million clusters. We searched the
consensus spectra of these clusters against the same protein database and identified 115330 spectra from
20801 peptides and 5343 proteins with the same 1% FDR (≈ 8% of these peptides were missed by the
searches of individual spectra). We further restricted the database to 5343 identified proteins (akin to the
two-stage search performed by X!Tandem [2]) and identified 122703 spectra from 22204 peptides in the
resulting (smaller) database with 1% FDR.

To illustrate how spectral libraries contribute to peptide identifications, we constructed a non-curated
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spectral library consisting of the consensus spectra of PSMs identified in the traditional database search and
searched all spectra against this spectral library. This procedure increased the number of identified spectra
from 96536 to 115743 with a maximal p-value of 0.01 (see below for more details on p-value assignment).
We note that while the number of identifications is quite similar in the spectral archive and the spectral
library approaches, the amortized time required to create the archive is small compared to the total time
required for a database search. Building the archive took ≈ 0.03 seconds per spectrum, faster than the
typical runtime for an MS/MS search against a large database.

We emphasize that 1% FDR computed via Target-Decoy Approach (TDA) and 0.01 p-value represent
different (and not equivalent) ways to select statistically significant matches. Since it remains unclear what
represents an analog of a decoy database for spectral libraries, we used a recently proposed Target-Decoy
Library Approach (TDLA) approach [8] to better compare the results of the database search with the
spectral library search. We used a large library from an evolutionary distant species than the one being
searched (e.g., insects versus mammals) to serve as a decoy library and removed from this library any PSMs
representing peptides that were common to both species. Similarly to TDA, after searching the spectral
dataset against target and decoy libraries, the results are sorted by scores and FDR is computed by taking
note of ratio between the number of decoy and target hits at each score level.

Searching the human kidney dataset using the NIST human library [11] (with ≈ 300000 spectra)
led to the identification of 64021 spectra from 16290 peptides and 4270 proteins (results were filtered to
1% FDR using the TDLA approach with spectral library of D. melanogaster as a decoy and adjusting
for the difference in sizes). The peptides identified by the search of the NIST spectral library included
2045 peptides that were not identified by the regular database search (≈ 10% of the peptides identified
by regular search). As expected, a significant portion of peptides from the kidney dataset is missed by
spectral libraries (since they remain incomplete), a reason why library searches are typically followed by
regular database searches. On the other hand, library search represents a valuable addition to the regular
database searches since they generate additional peptide identifications.
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Supplementary Note 2 - Reducing Running Time and Memory Requirements

Our clustering algorithm follows the design of the algorithm in [6] but uses various heuristics to reduce its
running time (currently, 106 similarity computations per second on a 3.2Ghz desktop PC) and memory
requirements (enabling clustering of two orders of magnitude more spectra than the the previous algorithm).
Note that the pre-processing rate of the data is ≈ 2000 spectra/second (drops to 700 spectra/second if
quality filtering is also performed). We employ various heuristics aimed at reducing the number of similarity
computations performed by our clustering algorithm.

The first heuristic evaluates how likely it is that two spectra belong to the same peptide, without
explicitly computing the similarity between them. For example, spectra from the same peptides have
similar sets of strong peaks: in our data, 96% of the pairs of spectra from the same peptide had at least
one peak in common in their respective sets of the four strongest peaks. However, only 3.5% of the pairs
of spectra from different peptides match one or more of their top four peaks. Thus we are able to forgo
most of the unnecessary similarity computations. To further reduce the running time we organized the
spectra in lists according to the masses of their top four peaks (each spectrum appears in four lists that
correspond to its four top peaks’ masses). Thus in practice we do not have to evaluate all pairs of spectra
to check if the sets of their top four peaks intersect, rather we confine the similarity computations to pairs
of spectra appearing in the same list.

The second heuristic we use relies on the fact that our algorithm uses multiple rounds of cluster
joining with decreasing similarity thresholds. Using this approach we approximate a hierarchical-clustering
algorithm. Instead of recomputing the similarity between pairs of consensus spectra at each round, we
carry over similarity results from one round to the next by taking note of the top 25 most similar clusters
that matched each spectrum (it is unlikely that the most similar consensus for a given spectrum was not
one of the top 25 in a previous round). Thus in subsequent rounds we do not compute the similarities
between all pairs of spectra, but rather only a much smaller fixed number of computations is involved.

In our clustering algorithm we also made several design decisions aimed at reducing the memory re-
quirements. First we removed all quadratic-space elements that were part of the previous version (e.g., a
bit vector that indicated if pairs of spectra should be compared or not). In addition, to reduce memory
fragmentation and the overhead cost of memory reallocation, all data structures are centrally allocated
in beginning of the run (space for peaks, consensus spectra, etc.) and reused by the program as different
spectra batches get processed without explicitly freeing the memory until termination. In addition, due to
the way the binary data is stored, the program can easily load to memory only the spectra that need to
be evaluated (these spectra all fall in within a specific range of precursor 𝑚/𝑧 units). Once a spectrum’s
precursor 𝑚/𝑧 is below the 𝑚/𝑧 units being processed, the memory it used (spectrum structure and peaks)
is immediately made available for the next batch of spectra.

Figure 2 displays the running time of the algorithm (without data preprocessing) as a function of
the number of spectra (left) and the number of similarity computations (right). There are two types of
operations that need to be performed: Input/output tasks such as reading spectra, creating consensus
spectra for clusters, and writing the results to the output. The time required to perform these actions
tends to be linear in the input size (the number of spectra). The other type of operations are the ones
involved in the clustering of the data which are mainly computing the similarity between pairs of spectra.
The number of pairs that need to be compared typically grows quadratically with the input size. The plot
on the left shows the quadratic nature of the running time. From it we see that up to an input size of
∼ 1.5 million spectra the linear-time operations take longer than the quadratic time, but for larger datasets
the quadratic-time operations begin to dominate (as expected). This quadratic growth of the clustering
time may become a limiting factor in the future when even larger datasets (e.g., a trillion of spectra) are
clustered.

The main design consideration when approaching this problem was to minimize the running time.
Hence we developed a fast greedy approach which at times might yield “suboptimal” clustering (e.g., a
partition that does not minimize the squared distance from clusters to centroids). Unlike most clustering
algorithms, the order in which the spectra are evaluated can slightly change the composition of the clusters
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Figure 2: The running time of the MSCluster for datasets of various sizes (excluding time required to
preprocess the data). The graphs show the running time in seconds vs. (i) the number of spectra in the
dataset (left), and (ii) the number of similarity computations (right). The running time is dominated by
the number of similarity computations and is approximated as quadratic in the number of spectra.

(the algorithm greedily joins pairs of consensus spectra whose similarity exceeds a threshold, these are not
always the most similar pairs of spectra). In addition, MS-Cluster can only add spectra to a cluster but
it never splits a cluster into sub-clusters. Splitting clusters is not practical when constructing large-scale
archives since the peak information of individual spectra is not stored (only peak information for consensus
spectra is kept). We believe the resulting gain in speed outweighs the slight decrease in clustering quality,
and is a worthwhile sacrifice for gaining the capability to cluster billions of spectra. Furthermore, as we
argued previously [6], since in the domain of MS/MS, the spectra display significant variance which leads
to a natural fragmentation of clusters of spectra of the same peptide, there is little practical value in trying
to obtain an “optimal” clustering of the data.
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Supplementary Note 3 - Selecting Spectral Similarity Thresholds and Computing P-
Values

We employ the widely-used dot-product [9, 12] for fast computation of the similarity between spectra.
To speed up the computations we consider only the top 15-40 peaks in each spectrum (which does not
compromise the quality of clustering), depending on the maximal 𝑚/𝑧 of peaks in the spectrum. The mass
lists are selected in such a way that every pair of masses are at least 𝜀 apart (𝜀 represents the accuracy of
the mass measurements). See supplemental information for more details on the similarity computation.

Figure 3 (top left) shows the probability distributions of similarity values between spectra in a cluster
and their consensus, randomly selected pairs of spectra of the same peptides (identified by InsPecT at 2%
FDR) and of pairs of spectra from different peptides. Pairs of spectra of different peptides were selected
to have a precursor 𝑚/𝑧 of at least 8 𝑚/𝑧 units apart to avoid comparing spectra of the same peptide
that got erroneously assigned. As expected, pairs of spectra of the same peptide display a much greater
similarity to each other compared to pairs of spectra from different peptides. In addition, the similarity
between spectra in a cluster and their consensus is, on average, much higher, than the similarity between
an arbitrary pair of spectra of the same peptide (that are not necessarily from the same cluster). This
difference has two main causes. First, for spectra from the same cluster, the similarity to the consensus is
typically greater than the similarity between cluster members, since the consensus represents the “center”
of the cluster. Second, spectra from the same peptide may end up in different clusters (Table 1 in the
paper illustrates the difference between number of identified peptides and number of identified clusters).
These multiple clusters typically have smaller “radius” compared to the case when all spectra from the
same peptide end up in the same cluster.

The similarity threshold 𝑡 that is used to determine if a spectrum 𝑆 should be joined into a cluster
depends on several parameters: 𝑁 - the total number of spectra that 𝑆 was compared with while clustering;
𝑝 - the mixture probability we are willing to tolerate for joining spectra that are generated from different
peptides; and the empirical cumulative probability function 𝐶𝐷𝐹 (𝑡) which measures the proportion of
random pairs of spectra from different peptides with a similarity value that is less than or equal to 𝑡
(𝐶𝐷𝐹 (𝑡) is depicted as the dash line in Figure 3, top right).

Assuming that the spectra being compared are independent of each other, we can select for a spectrum
a minimal similarity threshold 𝑡 that satisfies [𝐶𝐷𝐹 (𝑡)]𝑁 > 1 − 𝑝, in order to guarantee that the overall
proportion of cases where spectra are joined erroneously will be less than 𝑝. In a similar fashion, 𝐶𝐷𝐹 (𝑡)
can be used as the null hypothesis distribution to assign p-values to the similarities observed between pairs
of spectra during clustering, which in turn can be used to decide if spectra should be joined or not. For
example, the event where the best match to spectrum 𝑆, after being compared to 𝑁 spectra, showed a
similarity value 𝑡 can be assigned 𝑝−𝑣𝑎𝑙𝑢𝑒 = 1− [𝐶𝐷𝐹 (𝑡)]𝑁 . As 𝑁 increases, for instance, when clustering
larger datasets, the similarity threshold 𝑡 also needs to increase in order to maintain the same clustering
quality. Figure 3 (bottom left) depicts this phenomenon. The precision/recall curves in the figure are
generated from experiments in which the similarity between a spectrum 𝑆 and another random spectrum
of the same peptide was compared to the maximum similarity between 𝑆 and 𝑁 randomly selected spectra
of other peptides. 𝑆 is considered correctly matched only if its similarity to the other spectrum of the
same peptide is larger than the maximal similarity between it and the 𝑁 spectra from other peptides.
By considering different minimal similarity thresholds that are needed in order to join pairs of spectra we
can create precision/recall curves. The recall is the proportion of instances in which the spectrum 𝑆 and
the other spectrum from the same peptide had a similarity exceeding the threshold, and the precision is
the proportion of those cases in which the pair of spectra of the same peptide had a similarity that was
higher than the maximal similarity observed between 𝑆 and the 𝑁 spectra from other peptides. The curves
in the figure show that for low values of 𝑁 it is not likely to mismatch the spectrum 𝑆, however as 𝑁
increases, we are more likely to observe cases where spectra of other peptides show significant similarity
to our spectrum, so fewer pairs of spectra can be confidently joined. For example, at a fixed precision rate
of 0.95, approximately 95% of the pairs of spectra can be joined if 𝑆 is compared to 𝑁 = 1 additional
spectrum. This proportion drops to 60% and 21% when 𝑁 is increased to 1,000 and 1,000,000, respectively.
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Figure 3: Probability density functions (top left) and cumulative distribution functions (top right) for
similarity between spectra in clusters and their consensus, pairs of spectra of the same peptide (but not
necessarily from the same cluster) and pairs of spectra from different peptides. The cumulative distribution
functions use a logarithmic scale and plot log10(1 − 𝐶𝐷𝐹 ) to display the difference in the values of the
functions more clearly. The dash line which corresponds to the CDF of pairs from different peptides is used
as the null hypothesis for computing p-values for similarity scores. Each plot was generated using over 108

pairs of spectra.The plot on the bottom left depicts precision/recall curves generated in experiments where
the similarity between a spectrum 𝑆 and another random spectrum of the same peptide was compared
to the maximum similarity between 𝑆 and 𝑁 randomly selected spectra of other peptides (with a similar
precursor mass). 𝑆 is considered correctly matched only if its similarity to the other spectrum of the
same peptide is larger than the maximal similarity between it and the 𝑁 spectra. By considering different
minimal similarity thresholds that are needed in order to join pairs of spectra we can create precision/recall
curves. The recall is the proportion of instances in which the spectrum 𝑆 and the other spectrum from the
same peptide had a similarity exceeding the threshold, and the precision is the proportion of those cases in
which the pair of spectra of the same peptide had a similarity that was higher than the maximal similarity
observed between 𝑆 and the 𝑁 spectra from other peptides.
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Figure 4: Intersection of protein sequence databases. The figure shows the level of conservation of peptides
of different lengths when intersecting the six-frame translations of the genomes of Shewanella oneidensis
(Sone), Shewanella frigidimarina (Sfri) and Shewanella putrefaciens (Sput) (for the sake of simplicity we
substitutes intersection proteome by the intersection of six-frame translations). The 𝑥-axis denotes peptide
length, and the 𝑦-axis shows the proportion of peptides that are present in the intersection database
compared to the number of peptides in the database of Shewanella oneidensis.

Supplementary Note 4 - Searching intersection proteomes

Since proteomes of related species may share many peptides, clusters resulting from multiple species can
be searched against smaller intersection proteomes, thus increasing the number of peptide identifications
for a given FDR. When spectra are entered into a spectral archive, we keep track of the organism from
which they were produced, which allows us to detect clusters of spectra that originate from multiple
organisms. If a spectrum belongs to a peptide that appears in multiple proteomes, we can search it against
the significantly smaller intersection proteome, which is defined as the set of all peptides that belong to all
these proteomes.

Figure 4 shows the relative sizes of the intersection proteomes compared to the size of the database of
the Sone proteome. Shorter peptides have a much higher chance of being in the intersection proteome than
longer peptides (the longer a peptide, the higher the probability that it incurs a mutation in a diverged
species). For 7 amino acids long peptides we see that 39% of the 7-mers are common to the database of
Sone and Sput, 23% of 7-mers are common to Sone and Sfri and 11% are common to the intersection of
all three. These rates further reduce as the peptide length in the intersection database increases.
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Cluster Num. (%) Total Num. Num. Num. Num. Num.
size spectra clusters 1-clusters 2-clusters 3-clusters 4-clusters 5+-clusters
1 3,894,311 19.89% 3894311 3894311 - - - -
2 1,066,320 5.45% 533160 366679 166481 - - -
3 701,622 3.58% 233874 119097 80241 34536 - -
4 491,296 2.51% 122824 53189 36297 25209 8129 -
5 367,830 1.88% 73566 28251 18682 15420 8835 2378
6 299,718 1.53% 49953 18117 10874 9881 7094 3987
7 252,700 1.29% 36100 12466 6992 6500 5355 4787
8 218,608 1.12% 27326 9248 4901 4311 3895 4971
9 180,945 0.92% 20105 6684 3266 2842 2742 4571
10 163,330 0.83% 16333 5316 2527 2131 2093 4266
11-15 654,280 3.34% 51483 16283 7313 5603 5583 16701
16-20 487,344 2.49% 27326 8102 3557 2377 2127 11163
21-30 1,020,942 5.21% 40588 10300 4951 2934 2583 19820
31-40 939,100 4.80% 26753 5431 2818 1481 1348 15675
41-50 810,589 4.14% 17938 3387 1746 870 761 11174
51-100 2,470,047 12.61% 35678 5856 3033 1604 1269 23916
101-200 2,109,678 10.77% 15439 2173 1182 620 425 11039
201-500 1,861,874 9.51% 6367 690 307 206 130 5034
500+ 1,590,460 8.12% 1497 149 37 26 16 1269
Total 19,580,994 100.00% 5,230,621 4,565,729 355,205 116,551 52,385 140,751

Table 3: Clustering of spectra of short peptides in PNNL dataset. We selected ≈ 5 million clusters (with
19 million spectra) from the PNNL dataset that had a predicted precursor mass of less than 850 𝑚/𝑧 units.
The table holds the number of spectra in clusters of different sizes and also lists how many of those clusters
included spectra from multiple organisms. A 𝑘-cluster is defined as a cluster with spectra from exactly 𝑘
organisms (similarly, a 𝑘+-cluster includes spectra from at least 𝑘 organisms).

Supplementary Note 5 - Using spectral archives to identify short peptides

MS/MS database search algorithms analyze all peptides in a proteome, usually a much smaller compu-
tational space than the set of all possible peptides. This enables the Target-Decoy Approach (TDA) to
evaluate the statistical significance of the results [3, 7]. However, the TDA paradigm does not apply to
short peptides in peptidomics studies (e.g., many neuropeptides are shorter than 7 aa) short peptides are
present in both target and decoy protein databases. Thus, a database search in this case is not unlike
a de novo interpretation (since it needs to consider all possible peptides), which typically achieves lower
accuracy and does not provide a possibility to evaluate FDR (because score distributions in target and
decoy databases are nearly identical).

To interpret spectra of short peptides we need to design new algorithms and train new scoring models,
tailored for the unique characteristics of the fragmentation of short peptides. However, to do this we need
large training data, which is usually obtained via a database search, a catch-22. Though generating spectra
for a large number of synthetic peptides is a way out of this deadlock, this approach is costly.

In this section we demonstrate how spectral archives can be utilized to bootstrap generation of a training
set of spectra of short peptides and provide false discovery rates for the identifications. We started off by
selecting a subset of the PNNL data set which held all the clusters with precursor mass below 850 𝑚/𝑧
units (typically corresponding to peptides of length 7 amino acids and shorter). This subset contained over
5 million clusters (See Table 3 above). For each cluster we also took note of the organisms that contributed
spectra to it. Following that we ran the PepNovo [4, 5] de novo sequencing algorithm on each cluster and
retained the highest scoring peptide (we use de novo sequencing since its scoring is less sensitive to the
fact that the peptides are short, compared to a database search). We retained clusters whose de novo
sequenced peptide was between 4 and 6 amino acids in length, leaving us with 718,437 clusters. At this
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stage we run into a problem since we cannot tell which of the generated de novo peptide reconstructions
are correct. To provide false discovery rates, we needed to come up with a new variant of the target-decoy
approach that generates individual target/ decoy databases for each spectral cluster (in contrast with the
standard TDA approach that generates one target and one decoy database).

The first step in our TDA analysis, is to partition the de novo results according to the length and charge.
De novo solutions with the same length and charge are then sorted according to decreasing PepNovo scores
and evaluated sequentially. To be able to compute FDRs for the results, we keep track of the sum of the
weights of instances that hit the target (𝑊𝑡) and decoy (𝑊𝑑), as defined below. Initially 𝑊𝑡 = 𝑊𝑑 = 0.
For each de novo result (a peptide 𝑃 of length 𝑙 and a cluster consensus spectrum 𝑆), we perform the
following:

∙ Generate the target database 𝑇𝑎𝑟𝑔𝑒𝑡 according to the number of organisms that contributed spectra
to the cluster represented by a cluster. If only a single species contributed spectra to a cluster, then
𝑇𝑎𝑟𝑔𝑒𝑡 contains all unique peptides of length 𝑙 in the species’ proteome. If 𝑘 > 1 species contributes
spectra to a cluster, then 𝑇𝑎𝑟𝑔𝑒𝑡 contains all unique peptides of length 𝑙 in the intersection database
of the 𝑘 species.

∙ Define the decoy database as the set of all 20𝑙 − ∣𝑇𝑎𝑟𝑔𝑒𝑡∣ peptides of length 𝑙 that do not belong to

𝑇𝑎𝑟𝑔𝑒𝑡. Compute the target/decoy size ratio 𝑟 = ∣𝑇𝑎𝑟𝑔𝑒𝑡∣
20𝑙−∣𝑇𝑎𝑟𝑔𝑒𝑡∣ . If 𝑟 > 1 we ignore this de novo result

since we do not have a sufficiently large decoy to evaluate against.

∙ Evaluate the de novo result. If 𝑃 ∈ 𝑇𝑎𝑟𝑔𝑒𝑡 then we set 𝑊𝑡 = 𝑊𝑡+1, otherwise we set 𝑊𝑑 = 𝑊𝑑+ 𝑟.
Normalizing the target/decoy hits as 1 : 𝑟 (as opposed to 1 : 1 as in standard TDA) accounts for the
fact that target and decoy databases have different sizes in our case.

∙ Compute the FDR as 𝑊𝑑
𝑊𝑑+𝑊𝑡

.

By partitioning the results according to peptide length and precursor charge we ensure that each set
of spectra has similar fragmentation characteristics and uses the same scoring model, so there is no bias
in the de novo scores. The reason we sort the spectra in each set according to the score (rank score in
the case of PepNovo) is that we assume that higher scores are correlated with the accuracy of the de
novo reconstructions. Thus, analyzing the spectra in this order should give the identifications with a low
FDR first. Each de novo result that gets evaluated consists of a peptide 𝑃 (𝑙 amino acids long) and a
cluster’s consensus spectrum 𝑆. We compute a separate target and decoy database for each case. The
target database 𝑇 consists of all unique 𝑙-mers in the sequence database of the organism whose spectra are
associated with 𝑆 (or 𝑙-mers in the intersection database if more than a one organism’s spectra belongs to 𝑆’s
cluster). For a decoy database we use all 20𝑙−∣𝑇 ∣ peptides not in the target database. If the decoy database
is too small (smaller than the target database) we discard the spectrum without attempting to identify it.
If the peptide 𝑃 ∈ 𝑇 then we keep the result and increment the weight of the hits to the target database:
𝑊𝑡 = 𝑊𝑡 +1. Otherwise we assume that the peptide hit the decoy, in which case we increment the weight
of the hits to the decoy database with the normalized target/decoy ratio: 𝑊𝑑 = 𝑊𝑑+

∣𝑇 ∣
20𝑙−∣𝑇 ∣ . Normalizing

the decoy weight to ∣𝑇 ∣
20𝑙−∣𝑇 ∣ ensures that the weight in 𝑊𝑑 represents the typical 1:1 target/decoy ratio, so

at each stage we can compute the FDR for the peptide identification as 𝐹𝐷𝑅 = 𝑊𝑑
𝑊𝑑+𝑊𝑡

.
We applied the identification procedure described above to all the clusters for which the top-scoring de

novo sequence was 4-6 amino acids long. The results are described in Table 4, which lists the number of
unique peptide identifications made for different peptide lengths and precursor charges. The columns of
the table split the results according to different ranges of the FDRs computed for the peptides. A total of
3466 peptides of length 4, 10013 peptides of length 5, and 45252 peptides of length 6 were identified with
an FDR below 0.1, and about half them had an FDR below 0.05.

Most of the peptide identifications of length 4 and 5 were derived from clusters of spectra from several
organisms (with large protein databases this is the only way to obtain a sufficiently large decoy database to
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Peptide Precursor Num. peptide ids with FDR in different ranges
length charge (number of ids from different 𝑘-clusters, 𝑘 = 1, 2, 3, 4, 5+)

0 < 𝐹𝐷𝑅 ≤ 0.01 0.01 < 𝐹𝐷𝑅 ≤ 0.05 0.05 < 𝐹𝐷𝑅 ≤ 0.1

4 1 113 1753 1600
(3,4,12,5,89) (268,185,134,127,1039) (372,180,117,102,829)

4 2 2 0 0
(2,0,0,0,0) (0,0,0,0,0) (0,0,0,0,0)

5 1 179 2118 5454
(25,27,19,19,89) (700,452,280,178,508) (2946,1118,570,265,555)

5 2 150 729 1383
(48,58,28,9,7) (354,231,108,27,9) (867,381,97,25,13)

6 1 1710 15240 16127
(975,367,172,80,116) (11490,2262,789,329,370) (14066,1516,320,123,102)

6 2 52 4685 7414
(33,15,2,2,0) (3665,736,181,52,51) (6404,820,126,30,34)

6 3 1 12 11
(1,0,0,0,0) (12,0,0,0,0) (10,1,0,0,0)

Table 4: Short peptide identifications. The table describes the number of short peptides (4,5 and 6 amino
acids long) identified in the spectral archive created from the PNNL data sets. The table lists the number
of unique peptide identifications made with varying false discovery rates for different peptide lengths and
precursor charges. The table also breaks down the identifications according to the number of organisms 𝑘
that contributed spectra to the identified cluster (𝑘 = 1, 2, 3, 4 or 5+).

ensure accurate identifications). In contrast, for length 6 we find that most of the identifications came from
clusters of spectra originating from a single species. This is feasible for organisms with small proteomes
(e.g., bacteria). For example, the Shewanella oneidensis proteome contains ≈ 1.5 million amino acids which
is much smaller than 206 ≈ 64 millions, the number of all peptides of length 6 (the probability of a random
hit to the database is ≈ 0.0235). Even with the human proteome, there are less the 107 unique 6-mers in
the database, which means that most of the ≈ 6.4 ⋅ 107 6-mers get assigned to the decoy database.

By analyzing the spectral archive, we were able to annotate the largest currently available set of spectra
of short peptides. This collection of annotated spectra can be used both as a spectral library for peptide
identification, and as a training set for creating more accurate scoring models for short peptides.

13



Set of clusters searched
Search type 10K random 10K largest 100K random 100K largest

DB search - no PTMs 1127 3488 8889 11840
DB search 15 PTMs 769 2717 6059 8941
“Blind” DB search 126 721 1412 2173

Table 5: Search results of different subsets of clusters from the HEK dataset. Close to 800,000 spectra
from the human HEK cell line were clustered into 380,000 clusters. From this set of clusters, 4 subsets
were selected and searched in a variety of methods: 10,000 randomly selected clusters, 10,000 of the largest
clusters, 100,000 randomly selected clusters, and 100,000 of the largest clusters. The cluster’s consensus
spectra where searched against the human IPI protein database in 3 modes: regular database search, a
search considering 15 common PTMs, and a “blind” search that considers arbitrary mass gaps. For each
search, the table reports the number of unique peptide identifications that were made at a false discovery
rate of 2%.

Supplementary Note 6 - Searches for Mutations and Unexpected Modifications: Large
vs. Small clusters

While the algorithms for identification of peptides with mutations and unexpected modifications (blind
MS/MS search) are available [15], they remain rather slow. As a result, blind MS/MS searches of large
spectral datasets remain a luxury that very few mass spectrometry labs can afford. Other complex MS/MS
searches [1, 10] face a similar computational bottleneck. Clustering can help focus the attention on the
spectra that are more likely to be identified with blind and other complex MS/MS searches.

Table 5 describes results of experiments which compared the number of unique peptide ids made
searching clusters from a HEK 293 dataset (≈ 800, 000 spectra grouped into 380,000 clusters), in various
search modes. When a limited number of clusters is searched (subsets of 10,000 and 100,000 clusters),
searching the largest clusters has a clear advantage when compared to the results obtained by searching an
equally sized set of randomly selected clusters. Searching the 10,000 largest clusters gave 3 (regular DB)
to 5.5 (blind search) times more unique peptide ids than searching an equally sized set of 10,000 randomly
selected clusters. When subsets of 100,000 clusters were considered the increase in identifications was by
a factor of between 1.33 (regular DB search) and 1.9 (blind search). These results demonstrate that when
the resources are limited one is better off searching the large clusters since they are more likely to be
identifiable.
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