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Appendix 
 

The Model-Averaged Naive Bayes (MANB) Algorithm 
 
This appendix contains a set of equations that describe the MANB algorithm. From this 
description, it is straightforward to code the algorithm. We proceed in a top-down fashion, 
describing first the main inference task and then successively decomposing it into its parts. 
 
Let X denote a set of n discrete-valued predictor variables, namely {X1, X2, …, Xn}. Let x denote 
an instantiation (setting) of the variables in X in some test case. Suppose variable Xi has ri 
possible values that are coded by the integers from 1 to ri. We say that ri is the dimensionality of 
Xi. For example, Xi could represent a SNP that has three genotype values and one value denoting 
a missing measurement, and those values could be encoded as 1, 2, 3, and 4. Let xi be the value 
that is assigned to variable Xi in a given patient case. According to our encoding of values, xi 

could be any number from 1 to ri. We will sometimes use xi  as shorthand for X = xi. Let T denote 
the discrete-valued target variable to be predicted. Let t denote an arbitrary value of T. Let rT  
denote the dimensionality of T. For example, in the disease dataset that we studied, T denotes 
late onset Alzheimer’s disease (LOAD), and it has the values absent (= 1) and present (= 2). 
 
From Bayes theorem, we obtain the following equation: 
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The subscript “a” in Equation 1 denotes a model-averaged probability. We assume that the 
predictors are conditionally independent of each other, given the value of the target T, and thus 
we obtain the following: 
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We estimate each of the terms in Equation 2 using training dataset D and prior probabilities that 
are described below. Assume that D has N cases (samples). In the LOAD dataset that we studied, 
D consists of SNP values and a LOAD diagnosis for each of 1411 patient cases. In reference (1) 
it is proved that model averaging over all 2n naive Bayes models is equivalent to using the 
following value for each term in Equation 2: 
 
 

),|()|...(),|()|()|( DxPDXTPDtxPDXTPtxP iiiiia      (3) 

 
where T → Xi designates that T and Xi are probabilistically dependent and T…Xi designates that 
they are independent. When they are dependent, we use the conditional probability P(xi | t, D) to 
estimate Pa(xi | t). When they are independent, we use P(xi | D). Equation 3 can be viewed as 
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using model averaging (regarding whether a relationship between T and Xi is present or not) to 
provide smoothing of the probability Pa(xi | t) that is being estimated by Equation 3. This 
smoothing is in addition to the smoothing that we will do in estimating P(xi | t, D) and P(xi | D) 
(see below), which also appear in Equation 3. 
 
Once we have derived Pa(xi | t) for each value xi (of variable Xi) and each value t (of target T) we 
can use those probabilities in Equations 1 and 2 to calculate the posterior probability over T for 
any instantiation x of the predictor variables. For each predictor variable Xj that has no assigned 
value in a given patient case, we simply do not include the term Pa(xj | t) in Equation 2.1 
 
We now describe how each of the terms in Equation 3 is derived. Let Nijk denote the number of 
times in database D that variable Xi has the value k when target T has the value j. We pre-
compute and store these Nijk counts for use below. To keep the notation simple, we will assume 

that xi equals the value k and t equals the value j. Let .
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distribution is equally likely a priori, and then integrating over all of them to obtain the 
following expectation (2): 
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Similarly, we estimate P(xi | D) as follows: 
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We will now derive P(T → X | D) and P(T … X | D) in Equation 3.  
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where Di denotes the data on just T and Xi in D. Assuming for now that we can compute the right 
side of Equation 4, we apply it and the following equations to derive P(T…Xi | D) and              
P(T → Xi | D), which are needed in Equation 3: 
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1 An alternative approach is to include a special value labeled “MISSING” for each predictor variable. If a predictor 
has a missing value in a given case to be predicted, its value is instantiated to be the value MISSING. This approach 
allows a missing value to be informative. We used this approach in the algorithm described in the main paper. 
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We now discuss calculating the terms on the right side of Equation 4. The term P(T→Xi) is our 
prior probability that T and Xi are probabilistically dependent, and P(T…Xi) = 1 - P(T→Xi). For 
example, for the LOAD dataset that we studied, we used  P(T→Xi) = 20 / 312,318.  
 
We derive  P(Di | T→Xi) in Equation 4 as follows, based on assumptions described in (1-3): 
 

 
 

















T ir

j

r

k
ijk

iij

i
ii N

rN

r
XTDP

1 1

!
)!1(

)!1(
)|(        (6) 

 
Note that the values of the factorial function can be pre-computed and stored in an array, and 
thus, its use above will correspond to a simple array access. 
 
In a manner similar to Equation 6, we derive P(Di | T…Xi) in Equation 4 as follows: 
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To provide an indication of which variables most strongly predict target T, we can sort the 
predictor variables according to P(T→Xi | D), as given by Equation 4, and output the top c 
predictors, along with their probabilities, where c is a user-specified value. 
 

A Logarithmic Version of MANB 
 
The terms in the above equations can readily become so small that they cause problems in 
maintaining adequate numerical precision. Thus, it is better to calculate them in logarithmic 
form. This section parallels the above section, while presenting the equations in a logarithmic 
form. We will use natural logarithms, denoted by the function ln. We will use exp(x) to denote 
ex.  
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where lnDenom is a function that is specified by the following pseudocode: 
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The function lnAdd(x, y), which appears above and is defined below, takes two arguments x and 

y that are in logarithmic form and returns ln(ex + ey). However, it does so in a way that preserves 
a good deal of numerical precision that could be lost if ln(ex + ey) were calculated in a direct 

manner. The value -∞ in the above pseudocode can be implemented in practice by using the 
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largest negative number that can be represented by the computer on which the code is running, as 

for example -1 × 10
+4931

.
 

 

Once we have computed ln(Pa(t | x) for each value of t, as shown in Equation 1’, we simply 
exponentiate each term to obtain the posterior probabilities of interest: Pa(t | x) = exp(ln(Pa(t | 

x)). 

 
The remainder of this section shows how to derive the terms on the right side of Equation 1’ in a 

manner that is parallel to the previous section.  
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Note that to improve efficiency, the logarithms of the factorials can be pre-computed and stored. 
Let lnfact(w) be a function that returns ln(w!). In the pseudocode that follows, we assume that 
these function values are stored in an array that is also called lnfact, which we distinguish by 
using square brackets. We can efficiently construct this array using the following iterative 
method: 
 
 lnfact[0] := 0; 

 DNrNm i
n
i dataset   trainingin the cases ofnumber   theis //);(max: 1  

 for w := 1 to m  
  lnfact[w] := lnfact[w-1] + ln[w]; 
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The lnAdd function was used above in several equations, and it is defined as follows: 
 
function lnAdd(x, y) 
   if y > x then 
     temp :=x; 
      x := y; 
      y := temp; 
  return ln(1 + exp(y - x)) + x.   // Note that exp(y – x) computes e(y – x). 
 
 
A Java implementation of the MANB algorithm is available at 
http://www.dbmi.pitt.edu/cooperlab/overview by following the link there to Software.  
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