
Wei, Application of Naive Bayes Model Averaging

Appendix

The Model-Averaged Naive Bayes (MANB) Algorithm

This appendix contains a set of equations that describe the MANB algorithm. From this
description, it is straightforward to code the algorithm. We proceed in a top-down fashion,
describing first the main inference task and then successively decomposing it into its parts.

Let X denote a set of n discrete-valued predictor variables, namely {X1, X2, …, Xn}. Let x denote
an instantiation (setting) of the variables in X in some test case. Suppose variable Xi has ri
possible values that are coded by the integers from 1 to ri. We say that ri is the dimensionality of
Xi. For example, Xi could represent a SNP that has three genotype values and one value denoting
a missing measurement, and those values could be encoded as 1, 2, 3, and 4. Let xi be the value
that is assigned to variable Xi in a given patient case. According to our encoding of values, xi

could be any number from 1 to ri. We will sometimes use xi as shorthand for X = xi. Let T denote
the discrete-valued target variable to be predicted. Let t denote an arbitrary value of T. Let rT
denote the dimensionality of T. For example, in the disease dataset that we studied, T denotes
late onset Alzheimer’s disease (LOAD), and it has the values absent (= 1) and present (= 2).

From Bayes theorem, we obtain the following equation:





Tr

t
a

a
a

tPtP

tPtP
tP

1'

)'()'|(

)()|(
)|(

x

x
x

 (1)

The subscript “a” in Equation 1 denotes a model-averaged probability. We assume that the
predictors are conditionally independent of each other, given the value of the target T, and thus
we obtain the following:

.)|()|(
1




n

i
iaa txPtP x (2)

We estimate each of the terms in Equation 2 using training dataset D and prior probabilities that
are described below. Assume that D has N cases (samples). In the LOAD dataset that we studied,
D consists of SNP values and a LOAD diagnosis for each of 1411 patient cases. In reference (1)
it is proved that model averaging over all 2n naive Bayes models is equivalent to using the
following value for each term in Equation 2:

),|()|...(),|()|()|(DxPDXTPDtxPDXTPtxP iiiiia  (3)

where T → Xi designates that T and Xi are probabilistically dependent and T…Xi designates that
they are independent. When they are dependent, we use the conditional probability P(xi | t, D) to
estimate Pa(xi | t). When they are independent, we use P(xi | D). Equation 3 can be viewed as

Wei, Application of Naive Bayes Model Averaging

using model averaging (regarding whether a relationship between T and Xi is present or not) to
provide smoothing of the probability Pa(xi | t) that is being estimated by Equation 3. This
smoothing is in addition to the smoothing that we will do in estimating P(xi | t, D) and P(xi | D)
(see below), which also appear in Equation 3.

Once we have derived Pa(xi | t) for each value xi (of variable Xi) and each value t (of target T) we
can use those probabilities in Equations 1 and 2 to calculate the posterior probability over T for
any instantiation x of the predictor variables. For each predictor variable Xj that has no assigned
value in a given patient case, we simply do not include the term Pa(xj | t) in Equation 2.1

We now describe how each of the terms in Equation 3 is derived. Let Nijk denote the number of
times in database D that variable Xi has the value k when target T has the value j. We pre-
compute and store these Nijk counts for use below. To keep the notation simple, we will assume

that xi equals the value k and t equals the value j. Let .
1 

 ir

k ijkij NN Let .
1 

 Tr

j iji NN Note

that for all i, Ni = N, where N is the total number of cases in training dataset D. Finally, let

.
1*  

 Tr

j ijkki NN We estimate the distribution P(xi | t, D) by assuming that every possible such

distribution is equally likely a priori, and then integrating over all of them to obtain the
following expectation (2):

iij

ijk
i rN

N
DtxP






1
),|(.

Similarly, we estimate P(xi | D) as follows:

ii

ki
i rN

N
DxP





1

)|(* .

We will now derive P(T → X | D) and P(T … X | D) in Equation 3.

)...()...|()()|(

)()|(
)|(

iiiiii

iii
i XTPXTDPXTPXTDP

XTPXTDP
DXTP




 , (4)

where Di denotes the data on just T and Xi in D. Assuming for now that we can compute the right
side of Equation 4, we apply it and the following equations to derive P(T…Xi | D) and
P(T → Xi | D), which are needed in Equation 3:

)...()...|()()|(

)...()...|(
)|...(

iiiiii

iii
i XTPXTDPXTPXTDP

XTPXTDP
DXTP




 (5)

1 An alternative approach is to include a special value labeled “MISSING” for each predictor variable. If a predictor
has a missing value in a given case to be predicted, its value is instantiated to be the value MISSING. This approach
allows a missing value to be informative. We used this approach in the algorithm described in the main paper.

Wei, Application of Naive Bayes Model Averaging

We now discuss calculating the terms on the right side of Equation 4. The term P(T→Xi) is our
prior probability that T and Xi are probabilistically dependent, and P(T…Xi) = 1 - P(T→Xi). For
example, for the LOAD dataset that we studied, we used P(T→Xi) = 20 / 312,318.

We derive P(Di | T→Xi) in Equation 4 as follows, based on assumptions described in (1-3):

 
 

















T ir

j

r

k
ijk

iij

i
ii N

rN

r
XTDP

1 1

!
)!1(

)!1(
)|((6)

Note that the values of the factorial function can be pre-computed and stored in an array, and
thus, its use above will correspond to a simple array access.

In a manner similar to Equation 6, we derive P(Di | T…Xi) in Equation 4 as follows:

!
)!1(

)!1(
)...|(

1
*









ir

k
ki

ii

i
ii N

rN

r
XTDP (7)

To provide an indication of which variables most strongly predict target T, we can sort the
predictor variables according to P(T→Xi | D), as given by Equation 4, and output the top c
predictors, along with their probabilities, where c is a user-specified value.

A Logarithmic Version of MANB

The terms in the above equations can readily become so small that they cause problems in
maintaining adequate numerical precision. Thus, it is better to calculate them in logarithmic
form. This section parallels the above section, while presenting the equations in a logarithmic
form. We will use natural logarithms, denoted by the function ln. We will use exp(x) to denote
ex.

,lnDenom))(ln())|(ln())|(ln( tPtPtP aa xx
 (1')

where lnDenom is a function that is specified by the following pseudocode:

.return

)));(ln())|(ln(,(lnAdd:

to1:for

;:

s

tPtPss

rt

s

a

T






x

The function lnAdd(x, y), which appears above and is defined below, takes two arguments x and

y that are in logarithmic form and returns ln(ex + ey). However, it does so in a way that preserves
a good deal of numerical precision that could be lost if ln(ex + ey) were calculated in a direct

manner. The value -∞ in the above pseudocode can be implemented in practice by using the

Wei, Application of Naive Bayes Model Averaging

largest negative number that can be represented by the computer on which the code is running, as

for example -1 × 10
+4931

.

Once we have computed ln(Pa(t | x) for each value of t, as shown in Equation 1’, we simply
exponentiate each term to obtain the posterior probabilities of interest: Pa(t | x) = exp(ln(Pa(t |

x)).

The remainder of this section shows how to derive the terms on the right side of Equation 1’ in a

manner that is parallel to the previous section.





n

i
iaa txPtP

1

)).|(ln())|(ln(x (2')

))).|(ln())|...(ln()),,|(ln())|((ln(lnAdd))|(ln(DxPDXTPDtxPDXTPtxP iiiiia  (3')

)))....(ln())...|(ln()),(ln())|(lnAdd(ln(

))(ln())|(ln())|(ln(

iiiiii

iiii

XTPXTDPXTPXTDP

XTPXTDPDXTP




 (4')

)))....(ln())...|(ln()),(ln())|(lnAdd(ln(

))...(ln())...|(ln())|...(ln(

iiiiii

iiii

XTPXTDPXTPXTDP

XTPXTDPDXTP




 (5')

 
 











T ir

j

r

k
ijkiijiii NrNrXTDP

1 1

)!ln())!1ln(())!1ln(())|(ln(
 (6')

*
1

ln((| ...)) ln((1)!) ln((1)!) ln(!).
ir

i i i i i i k
k

P D T X r N r N


       (7')

Note that to improve efficiency, the logarithms of the factorials can be pre-computed and stored.
Let lnfact(w) be a function that returns ln(w!). In the pseudocode that follows, we assume that
these function values are stored in an array that is also called lnfact, which we distinguish by
using square brackets. We can efficiently construct this array using the following iterative
method:

 lnfact[0] := 0;

 DNrNm i
n
i dataset trainingin the cases ofnumber theis //);(max: 1

 for w := 1 to m
 lnfact[w] := lnfact[w-1] + ln[w];

Wei, Application of Naive Bayes Model Averaging

The lnAdd function was used above in several equations, and it is defined as follows:

function lnAdd(x, y)
 if y > x then
 temp :=x;
 x := y;
 y := temp;
 return ln(1 + exp(y - x)) + x. // Note that exp(y – x) computes e(y – x).

A Java implementation of the MANB algorithm is available at
http://www.dbmi.pitt.edu/cooperlab/overview by following the link there to Software.

Wei, Application of Naive Bayes Model Averaging

References

1. Dash D, Cooper G. Exact model averaging with naive Bayesian classifiers. In: Sammut C, Hoffmann
AG, editors. Proceedings of the 19th International Conference on Machine Learning; 2002 July 8 -12;
Sydney, New South Wales, Australia. Morgan Kaufmann; 2002. p. 91-8.

2. Cooper G, Herskovits E. A Bayesian method for the induction of probabilistic networks from data
Machine Learning. 1992;9(4):309-47.

3. Heckerman D, Geiger D, Chickering D. Learning Bayesian networks: The combination of knowledge
and statistical data. Machine Learning. 1995;20:197-243.

