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A. Equivalence between Smoothing Splines and Bayesian Estimation of

SVM-W

As shown in the literature, there exists an interesting “equivalence” between smoothing

splines and Bayesian estimation of SVM-W(Kimeldorf and Wahba, 1970; Wahba, 1978;

Weinert and Sidhu, 1980). By equivalence, we mean that the two methods give the same

estimate of U(t). To elaborate, let Û(t; σ2
0) := E{U(t) | Y o;σε, σξ, σ

2
0} be the posterior mean

of U(t) in SVM-W . Wahba (1978) showed that Û(t) := lim
σ2
0→∞

Û(t;σ2
0) exists and is the same

as the estimate obtained by the smoothing spline with degree 2m−1 and 2m−2 continuous

derivatives. Wahba’s estimation method minimizes the penalized sum-of-squares,

J∑
j=1

[y(tj)− U(tj)]
2 + λPm(U), (A.1)

where λ = σ2
ε

σ2
ξ
and the roughness penalty Pm(U) is given by

Pm(U) =

∫
Ts
[U (m)(t, ω)]2dt, m = 2, 3, . . . , (A.2)

Kimeldorf and Wahba (1970) and Wahba (1978) have shown the “equivalence” by treating

penalized sum-of-squares (A.1) as a minimal norm optimization problem in a Reproducing

Kernel Hilbert Space, where the kernel is regarded as the variance covariance function of the

stochastic process U in SVM-W ; see also Ansley and Kohn (1986) for a detailed discussion.

Diggle and Hutchinson (1989) and Kohn and Ansley (1988) found that the equivalence results

can hold for more general covariance matrices than the diagonal matrix of independent

measurement errors ε(t).

B. Efficient MCMC scheme for SVM-OU

Here we outline an efficient MCMC scheme for the SVM-OU. The efficiency takes root in

the Markov property of the latent process and is achieved by the simulation smoother.

When V (t) follows an OU process, the Euler approximation gives the following discretized
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forms:

Ui = Ui−1 + Vi−1δi,

Vi = Vi−1 − ρVi−1δi + ρν̄δi + ξi

= (1− ρδi)Vi−1 + ρδiν̄ + ξi, ti ∈ Tao,

where Tao := {ti : i = 1, 2, . . . , J +
∑J−1

j=0 Mj} and ξi ∼ N (0, σ2
ξδi).

With the observation equation (1), we rewrite the above discretized forms as a standard

discrete-discrete state space model:

Yi = Ui + εi,=


1

0

0


⊤ 

Ui

Vi

ν̄

 = F Tθi + εi (B.3)

θi =


Ui

Vi

ν̄

 =


1 δi 0

0 1− ρδi ρδi

0 0 1




Ui−1

Vi−1

ν̄

+ ωi = Giθi−1 + ωi, (B.4)

where εi
i.i.d.∼ N (0, σ2

ε) and ωi ∼ N (0,Σωi
) with Σωi

=


0 0 0

0 σ2
ξδi 0

0 0 0

. The initial value

satisfies

θ0 ∼ N3




0

0

ν̄

 ,


106 0 0

0 106 0

0 0 0



 .

Given σ2
ε , ϕs, yo and ya, we apply the simulation smoother (Durbin and Koopman, 2002)

to update the latent state θi.

Given latent state θi, yo and ya, the above state space model can be reformulated as two

linear regression models in which parameters σ2
ε and ϕs will be sampled by the standard
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Gibbs sampling methods.

Yi = Ui + εi,

∆V ′
i =

Vi − Vi−1√
δi

= ρν̄
√
δi − ρVi−1

√
δi + ξ′i

= β0

√
δi + β1Vi−1

√
δi + ξ′i,

where ξ′i
i.i.d∼ N (0, σ2

ξ ) and prior [β0, β1]
⊤ ∼ N2(0, σ

2
βI2) with σ2

β = 106 and β1 ∈ R−; the prior

σ2
ε ∼ IG(a, b) and σ2

ξ ∼ IG(a, b) with a = b = 0.001. Finally, given both θi and σ2
ε , the

element of ya are sampled from ϕ(yi | Ui, σ
2
ε).

When V (t) follows a Wiener process, the above MCMC scheme can modified to the setting

θi =

Ui

Vi

, ρ = 0, ν̄ = 0, and Σωi
=

0 0

0 σ2
ξδi

 with little effort. The MCMC scheme of the

SAM-W and SAM-OU can be formulated in the same way.

C. Web Tables and Figures

[Figure 1 about here.]

[Table 1 about here.]

[Table 2 about here.]

D. Link to linear mixed model for SVM-WN

The SVM with the Wiener process V (t) and approximated transition density can be written

as a linear mixed model(LMM). It will be identical or similar to the linear spline model with

the truncated line function basis, depending on whether or not data are equally spaced.

When a{V (t),ϕs} = 0 and b{V (t),ϕs} = σξ, we discretize (2) and (3) for m = 2 by Euler
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approximation without data augmentation, and get,

∆U(tj) = U(tj)− U(tj−1) = V (tj−1)δj,

∆V (tj) = V (tj)− V (tj−1) = σξηj,

where δj = tj − tj−1, ηj = W (tj)−W (tj−1) ∼ N (0, δj), j = 1, 2, . . . , J with t0 = 0. It is easy

to see that

U(tj) = U(t0) + V (t0)tj + σξ

J−1∑
k=1

(tj − tk)+ηk,

V (tj) = V (t0) + σξ

j∑
k=1

ηk,

where f(x)+ is the positive part of function f(x). Plugging U(tj) into equation (1), we obtain

Yj = U(tj) + εj

= U(t0) + V (t0)tj + σξ

J−1∑
k=1

(tj − tk)+ηk + εj

= x⊤
j θ0 + z⊤

j γ + εj,

where xj = [1, tj]
⊤, θ0 = [U(t0), V (t0)]

⊤,

zj = [
√
δ1(tj − t1),

√
δ2(tj − t2), . . . ,

√
δj−2(tj−1 − tj−2), 0, . . . , 0]

⊤, and

γ = σξ[
η1√
δ1
, η2√

δ2
, . . . , ηJ−1√

δJ−1

]⊤ ∼ NJ−1(0, σ
2
ξIJ−1).Thus,

Y = Xθ0 +Zγ + ε,

where X = [x1 | x2 | · · · | xJ ]
⊤ and Z = [z1 | z2 | · · · | zJ ]

⊤. This is a linear mixed model

with J random effects, and parameters U(t0), V (t0), σ
2
ξ and σ2

ε . If δj = δj′ for any pair of j

and j′, then this LMM is sometimes called a linear spline model with truncated line function

basis (Ruppert et al., 2003).

References

Ansley, C. F. and Kohn, R. (1986). On the equivalence of two stochastic approaches to spline

smoothing. Journal of Applied Probability 23, 391–405.



Stochastic Functional Data Analysis: A Diffusion Model-based Approach 5

Diggle, P. and Hutchinson, M. (1989). On spline smoothing with autocorrelated errors.

Australian & New Zealand Journal of Statistics 31, 166–182.

Durbin, J. and Koopman, S. J. (2002). A simple and efficient simulation smoother for state

space time series analysis. Biometrika 89, 603–616.

Kimeldorf, G. S. and Wahba, G. (1970). A correspondence between bayesian estimation on

stochastic processes and smoothing by splines. Annals of Mathematical Statistics 41,

495–502.

Kohn, R. and Ansley, C. (1988). Equivalence between Bayesian smoothness priors and

optimal smoothing for function estimation. Bayesian Analysis of Time Series and

Dynamic Models 1, 393–430.

Ruppert, D., Wand, M., and Carroll, R. (2003). Semiparametric Regression. Cambridge:

Cambridge University Press.

Wahba, G. (1978). Improper priors, spline smoothing and the problem of guarding against

model errors in regression. Journal of the Royal Statistical Society B 40, 364–372.

Weinert, H. Byrd, H. and Sidhu, G. (1980). A stochastic framework for recursive computation

of spline functions: Part ii, smoothing splines. J. Optimization Theory and Applications

01, 255–268.



6 Biometrics, 000 0000

Y
ea

r

log(PSA+0.1)

0123

0
2

4
6

8
10

W
ei

ne
r

Le
ve

l

0123

O
U

Le
ve

l

−4−3−2−101
W

ei
ne

r
R

at
e

−4−3−2−101

O
U

R
at

e
0246

W
ei

ne
r

A
cc

el
er

at
io

n

0
2

4
6

8
10

0246

O
U

A
cc

el
er

at
io

n

Figure 1. PSA: Plots of data points(◦), posterior means(—) and 95% credible inter-
vals(gray shades) for the SAM with the Wiener process and OU process, respectively. In
the graph, the upper panels show the acceleration V (t), the middle panels show the rate
U̇(t), and the lower panels show the level, U(t).
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Table 1
Simulation results for the estimation of U(t) and V (t) for various observational time interval and measurement

errors.

Case States Bias MSE

1. Uniform sparse data U(t) 0.019 0.048
V (t) 0.047 0.375

2. Sparase early data U(t) 0.032 0.163
V (t) 0.106 1.780

3. Sparse late data U(t) 0.016 0.037
V (t) 0.032 0.192

4. σ2
ε = 0.05 U(t) 0.032 0.123

V (t) 0.076 0.717
5. σ2

ε = 0.1 U(t) 0.046 0.165
V (t) 0.090 0.832
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Table 2
PSA data:Posterior mean and quantiles for the SAMs.

Wiener Process OU Process

D̄ = −34.812, PD = 8.985, DIC = −25.827 D̄ = −38.867, PD = 6.213, DIC = −32.654
Mean SD 2.5% 50% 97.5% Mean SD 2.5% 50% 97.5%

σ2
ε 0.018 0.007 0.009 0.017 0.036 0.015 0.005 0.008 0.015 0.028

σ2
ξ 0.386 0.408 0.074 0.275 1.327 0.011 0.095 0.000 0.002 0.043

ν̄ −0.119 0.048 −0.193 −0.122 −0.004
ρ 0.741 0.170 0.573 0.723 0.990


