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Supporting Information 

Generation of Simulation Data  

In order to investigate the joint blind source separation(BSS) performance of mCCA+jICA 

and compare it to that of joint ICA and mCCA, we simulated two types of sources as two features. 

As shown in Figure S1, eight sources were generated for each feature to simulate images (256 × 

256) and one-dimensional signals (1×2000) respectively, resulting in true sources S1 (in dimension 

of 8×65536) and S2 (in dimension of 8×2000). The mixing matrices of each feature, i.e. A1 and A2 

(in dimension of 100×8), had diverse correlations between their corresponding columns, A1-A2 

correlation = [0.99 0.07 0.36 0.63 0.20 0.23 0.79 0.36], as the ground truth listed in Figure S1.  

One hundred noisy mixed images 
k

X  were generated for each modality under each of the 11 

noisy conditions via 
k k k k k k
   X I N A S N , k=1, 2; where 

k
I  was pure signal mixture and

k
N  

was random Gaussian noise. The corresponding mean peak signal-to-noise ratios (PSNR) were in 

range of [-1 20] dB. The PSNR is a most commonly used measure of image quality after 

corruption or recovery, which is defined as (s1) for the j
th

 mixture of feature k at every noisy 

condition, j=1,2…100. Typical PSNR value for the acceptable image quality is about 30 dB; the 

lower the value, the more degraded the image (Thomos, et al. 2006). 
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Three fusion models: jICA, mCCA and mCCA+jICA were implemented on simulated datasets 

respectively under every PSNR for 10 runs. The decomposed components were paired with the 

true sources via cross-correlation automatically within each feature. We adopted three metrics to 

estimate the joint BSS performance: 
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1) the average correlation of the estimated components Ŝ with true sources S ; 

2) the average correlation of the estimated mixing profiles Â with the ground truth A ;  

3) the mean square error of the estimated A1-A2 correlation compared to the truth.  

For each metric, we compared the three algorithms in two aspects, i.e., under different noise 

conditions and at different source indices. 

Simulation Results 

Figure S2 illustrated the simulation results for three evaluation metrics on the whole, displayed 

in 3 rows. For each metric, we compared 3 algorithms in different noisy conditions (PSNRs, left 

column) and for diverse source distributions (source index, right column). Under each noise 

condition (PSNR), we illustrated the averaged estimation accuracy on sources, mixing profiles and 

the modal linkage respectively in Fig S2 (a), (c) and (e). It was evident that mCCA+jICA was quite 

robust to noise, and its BSS performance was consistently the best in all noise conditions. 

Consequently, joint ICA was the second best in source estimation and mCCA was the second best 

in mixing profile estimation; mCCA+jICA also overperformed mCCA on estimation of modal 

connection and their estimation errors were not influenced much by the noise. Note that when 

PSNR=-1dB, i.e., noise was bigger than signal, all three methods can still have the estimation 

accuracy of Ŝ / Â  higher than 0.55.  

For each specific joint source, we plotted the mean correlation and its standard derivation 

across all noisy conditions via bars in Figure S2 (b) and (d). In (f), the true A1-A2 correlation was 

given via a yellow bar for every source, while the mean square error and its standard derivation of 

the link estimation were plotted in red for mCCA and in green for mCCA+jICA. Note that both 

very high (0.99) and low (0.07) correlation values existed in modal connection, representing both 
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shared and distinct parts of two features. Some sources had very close (5 and 6, r =0.20, 0.23) or 

the same (3 and 8, r=0.36) low correlation values, which was quite ordinary in real applications of 

brain data fusion.  

We next focused on one noisy case (PSNR=6dB) in order to dedicatedly investigate the joint 

BSS performance and provide a direct view of all estimated results in Figure S1, where true 

sources and true modal connection were also given in the left. Joint ICA separated almost all 

sources accurately especially for source 1,4,7 since their A1-A2 correlation >0.6, but failed to 

decompose the 3
rd

 source for feature 2 whose  A1-A2 correlation was lower(r=0.36). Multi-set 

CCA can track the modal connection more precisely than jICA, whereas it cannot completely 

decompose image sources in feature 1, particularly source 3-6. The proposed mCCA+jICA 

combined advantages of both methods and improved the performance substantially. It succeeded in 

separating sources and linking them correctly in a less-constrained condition, where there was no 

stringent requirement for the A1-A2 correlation. 

Discussion 

A major strength of the proposed model is that it improves the decomposition performance 

BSS substantially and alleviates many limitations by taking maximum advantage of the 

flexibilities offered by the two approaches, mCCA and jICA. Specifically, as illustrated in Figure 

S1 and S2, sources 1, 4 and 7 have higher A1-A2 correlation values, thus joint ICA works well, in 

accordance with our hypothesis. Consequently, the performance of mCCA suffers from ambiguity 

and misinterpretation in sources 3&8, 5&6 due to the requirement of sufficiently distinct canonical 

correlations; by contrast, the proposed model mitigates the performance deficits of mCCA by 

using a further ICA decomposition. It thus succeeds in separating sources accurately and linking 
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them correctly for all noisy conditions and all sources, with no stringent requirement for the A1-A2 

correlation.  

In addition, mCCA+jICA has more reliable and higher (or equivalent) estimation accuracy on 

modal connection than mCCA, see Figure S1 (e) and (f), especially for sources with lower A1-A2 

correlations (sources 2, 3 and 6), which could be the practical cases in brain imaging data fusion. 

Finally, compared to other methods, the mCCA+jICA approach does not increase the 

computational load appreciably; however it achieves the best performance under very flexible 

conditions.  
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Figure S1. Simulation results of comparing separation performance of 3 methods 

8 sources for each simulated modality: images (left) and  one-dimensional signals (right);100 

mixtures are generated for each PSNR, here we display PSNR=6dB. The correlations of mixing 

coefficients between corresponding sources of each modality are listed in the middle, so do their 

estimations. See jICA separate sources accurately except the 3
rd

 one-dimensional signal, while 

mCCA estimates the modal connection accurately except that it can not decompose images quite 

well. mCCA+jICA combine both advantages and improve the performance remarkably. 
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Figure S2 illustrates the whole simulation results for 3 factors and in 2 aspects. The 3 factors are 

source estimation ( Ŝ ), mixing matrix estimation ( Â ) and modal linkage shown by correlation 

between mixing coefficients of each modality(corr(A1(:,i),A2(:,i))), which are displayed in three 

rows. For each factor, we compared 3 algorithms in different noise conditions (left column) and for 

each source index (right column). Under each noise condition (PSNR), we illustrate the average of 

all sources’ estimation. For each specific source, we plotted mean estimation and standard 

derivation across all noisy conditions. As portrayed, mCCA+jICA is robust for noise and source 

type and its source decomposition performance performs the best. 

 


