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Abstract The expression and the nuclear translocation of the constitutive heat shock protein 70 (Hsc70) were
determined during the cell cycle in synchronized rat astrocytomic C6 glioma cells. Cells were first shifted to the GO by
serum starvation. Twelve hours after a subsequent growth stimulation by transfer to 20% newborn calf serum, about
50% of the cells entered S phase. Western blot analysis with different monocional antibodies showed that only the
constitutively expressed and moderately stress-activated Hsc70 is induced during serum stimulation. Maximat cellular
Hsc70 content (170% of the control) was observed in early to mid S phase followed by a drastic decline while cells pass
through G2/M (20% of the control). Hsp70, the major heat-inducible heat shock protein in C6 cells, is not detected in
either asynchronously proliferating, serum-starved or in serum-stimulated C6 cells. Analysis of the nuclear and
cytoplasmic protein fractions showed a significant increase of Hsc70 translocation into the nucleus during early S
phase. These results indicate a role for Hsc70 but not for Hsp70 in the process of S phase entry and/or progression in

C6 cells under physiological conditions.

INTRODUCTION

Heat shock proteins (Hsp) represent a set of proteins that
show increased synthesis during or after stress (e.g.
hyperthermia, UV-radiation or heavy metals). The Hsp70
family comprises proteins which are constitutively syn-
thesized and which are only moderately stress-activated
(Hsc70, heat shock cognate) as well as inducible proteins
which are expressed only after stress (Hsp70) (Morimoto
1991; Feige and Polla 1994; Minowada and Welch 1995).

The remarkable feature of all Hsc/Hsp70 isoforms is
their ability to act as ‘molecular chaperones’ which pro-
tect nascent or denaturated proteins from aggregation
and support their folding or refolding into the correct
conformation (Elis et al 1989; Agard 1993; Craig 1993;
Becker and Craig 1994; Hartl et al 1994; Wynn et al 1994,
Buchner 1996). Furthermore, Hsc70 supports the trans-
location of proteins into their target compartments (Shi
and Thomas 1992; Okuno et al 1993).
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It was hypothesized, in addition, that members of the
Hsp70 family were actively involved in the regulation of
the cell cycle (Milarski and Morimoto 1986; Milarski et
al 1989). Subsequent studies demonstrated different or
even contradictory cell cycle-dependent expression
patterns for Hsc and/or Hsp70 under physiological or
under stressful conditions (Kao et al 1985, Milarski and
Morimoto 1986; Wu et al 1987; Hang and Fox 1995;
Hang et al 1995; Hang and Fox 1996; He and Fox 1996).
However, there is agreement that Hsc/Hsp70 expression
is stimulated after infection with different tumor
viruses, e.g. adenovirus, S$V40, polyoma virus,
cytomegalo virus or HTLV-1 (Simon et al 1987; Sainis et
al 1994; D’Onofrio et al 1995). This stimulation does not
seem to constitute a cellular ‘stress response’ induced
by the infection, because the E1A 13S and SV40-T tran-
scription factors directly act on the Hsp70 promoter
{Milarski and Morimoto 1986; Wu et al 1986). The most
convincing evidence for a fundamental role of at least
Hsp70 in the process of cell proliferation was obtained
from hsp70-antisense application, which abolished
progress through G1 and S phase in human tumor cells
(Wei et al 1995).




It remains unclear, however, whether the constitutive
or the inducible Hsp70 isoform plays the main role in cell
cycle control of mammalian cells. This problem is addi-
tionally complicated by the fact that many investigators
use tumor cell lines, which constitutively express the
inducible Hsp70 (e.g. HeLa cells). Therefore we addressed
the following question: Which member of the Hsp70
family is differentially expressed during the cell .cycle
under physiological conditions?

Since Hsc/Hsp70 isoforms were shown to be involved
in the transport of proteins into the nucleus, we also
determined the intracellular distribution of Hsc/Hsp70 in
the course of the cell cycle. We chose the Cé6 glioma cell
line because these cells do not express the inducible
Hsp70 constitutively and because the expression of dif-
ferent stress proteins in C6 cells is well characterized
(Neuhaus-Steinmetz et al 1994, 1996). Our results clearly
demonstrate a cell cycle-dependent synthesis and
nuclear translocation of the constitutive Hsc70.

MATERIAL AND METHODS
Cell culture

Cé-glioma cells were maintained in Dulbecco’s modified
Eagle’s Medium (DMEM, containing 100 U/ml penicillin
and 100 pg/ml streptomycin) supplemented with 10%
newborn calf serum (NCS). In order to arrest the cells
they were seeded at low density. After 24 h, cells were
washed twice and DMEM supplemented with 0.5% NCS
was added. Within six days the cells were arrested in
GO/G1. Cells were stimulated to reenter the cell cycle by
adding DMEM containing 20% NCS.

Flow cytometry

Cells were harvested by trypsination, fixed in 70%
ethanol and stored overnight at — 20°C. For DNA mea-
surements, cells were centrifuged for 10 min at 300 x g
The pellet was resuspended in phosphate-buffered saline
(PBS). Cell doublets were excluded by filtering the solu-
tion through a 30 um mesh nylon net. After a second
centrifugation step, the cells were resuspended in PBS
containing 50 ug/ml propidium iodide (PI) and 10 mg/ml
RNase and stained for at least 45 min. DNA analysis was
performed on a FACScan flow cytometer (Becton
Dickinson, San Jose, CA, USA) using the Lysis II software.

Cell fractionation

Stimulated cells were washed twice with PBS, scraped
from the culture dishes and suspended in ice-cold buffer
(10 mM Tris, 3 mM MgCl,, 10 mM NacCl, 0.5% NP-40,
0.1 mM phenylmethylsulfonylfluoride (PMSF), pH 75).
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After 30 min on ice, the cell membrane was disrupted by
repeated trituration. Nuclear and cytoplasmic fractions
were separated by centrifugation at 600 x g and 4°C for
10 min. To remove the NP-40, the pellet was washed in
buffer without NP-40- four times. The purity was tested
by staining in nuclei with methylene blue. The cytoplas-
mic fraction was centrifuged once at 35 000 x gand 4°C
for 30 min. Both fractions were frozen in fluid nitrogen,
freeze-dried and resuspended in sample buffer (62.5 mM
Tris-HCI, 2% SDS, 16% glycerol, 5% B-mercapto-ethanol,
pH 6.8). After boiling for 5 min samples were stored at
—-80°C. Whole cell extracts were prepared by scraping the
cells from the culture dish into double distilled water,
freezing them in fluid nitrogen and freeze-drying.
Further steps were the same as described for the cell
fractionation above.

Western blot analysis

For all samples the protein concentration (ug/ul) was
determined and 10% SDS-PAGE gels were loaded with
equal amounts of protein per lane (25 pg). Proteins were
separated by electrophoresis and transferred to a nitro-
cellulose membrane. Membranes were blocked with
PBS containing 0.2% Tween20 for 30 min. Antibodies
were added for 60 min at RT. The antibodies used were:
SPA-820 (clone N27F3-4, monoclonal, 1:1000, Biomol,
Hamburg, Germany) which recognizes Hsc as well as
Hsp70; SPA-810AP (clone C92F3A-5, monoclonal,
1:1000, Biomol, Hamburg, Germany) detecting only
Hsp70; anti-B-tubulin (monoclonal, 1:1000, Sigma,
Deisenhofen, Germany) and goat anti-mouse conjugated
to alkaline phosphatase (1:1000, Sigma, Deisenhofen,
Germany). The relative intensities of the bands were
determined using a video scanner and CREAM™ software.

RESULTS
Cell cycle analysis

Flow cytometric measurements of single-cell DNA con-
tent in serum-starved cells (Fig. 1A) revealed that at least
85% of the cells were arrested in the GO/G1 phase at the
time just before serum re-addition. Within the first
hours of cell cycle progression, the morphological differ-
entiation of the cells observed during cultivation at low
serum was reversed without detectable induction of
DNA-synthesis for up to 8 h (Fig. 1B). The G1/S transi-
tion was derived from the right-handed shift of the G1-
peak in DNA histograms and occurred synchronously
after 12 h. A maximum of cells in S phase (about 50%)
was observed after 14—16 h {Fig. 1C). It was followed by
a significant increase of the G2/M fraction after 16 h
(Fig.1D). The maximum of G2/M cells was detected after
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Fig. 1 Cell cycle phase distribution of serum-stimulated rat C6 cells analysed by flow cytometry. (A) DNA-histograms of C6 cells harvested
at the indicated times after serum stimulation corresponding to the abscissa of B~D. Abcissa: DNA-content based on Pl-fluorescence,
ordinate: relative number of cells (10 000 cells were analysed). (B-D) Quantitative analysis of DNA-histograms using the LYSIS |l research
program (version 1.1; Becton Dickinson, San Jose, CA, USA). The proportion of cells in different phases of the cell cycle (ordinate; b)
GO/G1 fraction; (C) S phase fraction; (D) G2/M fraction) is plotted against the time of serum stimulation (abcissa). Values are means (= SE)

of three independent experiments.

20 h, thereafter this fraction gradually declined to a min-
imum 28 h after serum readdition. The initial synchrony
decreased after the first cycle as shown by the smaller
increase of the S phase fraction which began after 24 h.

In order to distinguish G2 and M phases, we addition-
ally counted the number of cells (data not shown). The
counts confirmed the flow cytometric results and
revealed that the onset of cell division occurs about 24 h
after serum stimulation. All cells finished the first divi-
sion cycle within 28 h.

Time course of Hsc70 expression and intracellular
distribution

Figure 2B shows that the amount of Hsc70 in whole cell
extracts and in the cytoplasmic fraction slightly
decreases during the first hours of serum-stimulatjon,
when cells are progressing through G1 phase. A distinct
increase of Hsc70 can be observed in the nuclear fraction
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within the first 12 h after the addition of serum. The
injtial decrease of Hsc70 may be due to an increase in
protein synthesis initiated by the addition of serum that
causes the relative amount of Hsc70 to decrease with
respect to total cellular protein.

The Hsc70 level increases in all cellular fractions when
cells pass the G1/S boundary (Fig. 2B; 12 h) and reaches a
maximum during S phase (Fig. 2B, 12-16 h). The most pro-
nounced increase of Hsc70 can be detected in the nuclear
fraction (approximately 400% of the control at O hours).
The considerable nuclear accumulation of Hsc70 indicates
a S phase-specific translocation. A drastic decrease of the
Hsc70 level occurs while cells progress through the G2/M
phase (Fig. 2B; 20-22 h). In this phase the most significant
decline is observed in whole cell extracts while the Hsc70
level of the nuclear fraction does not decrease below the
level of serum-starved cells. When the cells enter the sec-
ond G1 and S phase, the Hsc70 level of all cellular frac-
tions rises again. To rule out the possibility that the
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Fig. 2 Hsc70-amount in different cellular fractions of serum-
stimulated C6 cells analysed by Western blot. (A) The Hsc70
content of different cellular fractions prepared at the indicated times
after serum stimulation was determined by SDS-PAGE and a
subsequent immunoblot using the SPA-820 antibody (Biomoal,
Hamburg, Germany). Every lane was loaded with 25 pg of protein.
Due to the different protein contents of the fractions the amounts of
Hsc70 in the nuclear and cytoplasmic fractions are not directly
comparable. -tubulin is shown in the second lane as an internal
control; T: total cell extract, C: cytoplasmic fraction, N: nuclear
fraction. (B) Western blots were quantitatively evaluated by video
scanning and measurement with CREAM™ research software (Ver
4.1). Values are relative amounts of pixel density (ordinate; Hsc70
content of serum-deprived cells = 100%) plotted against the time of
serum stimulation (abcissa). Shaded box: time interval during
which maximal numbers of cells (30-50%, compare Fig. 1) are in S
phase. Values are means (+ SE) of three independent experiments.
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differential expression of the Hsc70 reflects a general
expression pattern of serum-induced protein synthesis, we
also analysed a housekeeping protein (B-tubulin). As
shown in Figure 2A, the amount of B-tubulin does not
exhibit significant cell cycle-dependent variations.

In order to ensure that the Western blots actually repre-
sent the amount of Hsc70 when the antibody SPA-820
(clone N27F3—-4) which recognizes both Hsc70 and Hsp70
isoforms was applied, identical samples were also incu-
bated with the SPA-810AP antibody (clone C92F3A-5).
This antibody specifically binds to the inducible isoform
(Hsp70). The SPA-810AP antibody failed to produce any
signals with the exception of a heat stressed sample as
positive control. The Western blot data thus unequivo-
cally reflect the expression of the constitutively expressed
Hsc70.

DISCUSSION

After serum stimulation of resting C6 cells, the subse-
quent S phase coincides with increased expression and
significant nuclear translocation of Hsc70. Whereas a
drastic decrease of Hsc70 expression is observed during
G2/M phase. In contrast to the cell cycle-dependent
expression of the constitutive form, the inducible Hsp70
was not detected under physiological conditions in cells
of any cell cycle phase. The inducible form is thus cell
cycle-independently restricted to the stress response in
C6 cells. The finding that Hsp70 is expressed only under
pathological conditions in rodents is confirmed by in
vitro and in vivo studies using other rodent cells and
tissues (Subjek and Shyy 1986).

Members of the Hsp70 family were proposed to be
cell cycle-regulated based upon cell cycle-dependent
changes in the amount of zsp70-mRNA in several human
cell lines (Kao et al 1985; Milarski and Morimoto 1986;
Milarski et al 1989). Recent investigations indicated that
the cell cycle-dependent expression might be restricted
to the inducible Hsp70 isoforms (Hang and Fox 1995;
Hang et al 1995; Hang and Fox 1996; He and Fox 1996).

In contrast to these results, cell cycle-dependent
expression of both the ksc70 and hsp70 genes was
observed in monkey kidney CV1 cells: Asp70 expression
was restricted to late S/G2, whereas ksc70 expression was
S phase-specific after serum stimulation as well as after
virus infection (Sainis et al 1994). In agreement with our
results, a drastic decline of 4sc70 mRNA was observed
while cells passed through G2/M (Sainis et al 1994).

The controversial results concerning cell cycle-specific
expression of different Hsp70 species may be due to the
type and degree of transformation among various mam-
malian cell lines, because different cellular and viral
protooncogene products (c-Myc, p53, E1A and SV40 T-
antigen) were shown to regulate the expression of Hsp70
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isoforms (Kingston et al 1984; Milarski and Morimoto
1986; Agoff et al 1993; Protti et al 1994; Tsutsumi-Ishii et
al 1995). Some protooncogenes exhibit a cell cycle-
dependent expression pattern themselves (Kao et al
1985; Rosenwald et al 1995) which may activate or inter-
fere with Hsp70 isoform expression.

Our observation that Hsc70 molecules enter the
nucleus during the S phase of the cell cycle in C6 cells
may be of particular interest: even though Hsc/Hsp70
are predominantly cytoplasmic, they contain a NLS
sequence and can selectively be transported into the
nucleus (Dang and Lee 1989; Mandell and Feldherr
1992). When cells are subjected to heat shock, both
Hsp70 isoforms translocate into the nucleus where they
facilitate the recovery of nucleolar function (Pelham
1984; Yamane et al 1995). Under physiological condi-
tions Hsc70 is apparently involved in the active import of
karyophilic proteins into the nucleus, where the chaper-
one activity of Hsc/Hsp70 probably supports the disas-
sembly of the nuclear translocation complex {Mandell
and Feldherr 1992; Shi and Thomas 1992; Okuno et al
1993; Goldfarb 1994; Yang and DeFranco 1994; Yamane
et al 1995; Shulga et al 1996). Microinjection of anti-
Hsc70 antibodies abolished the nuclear translocation of
various NLS bearing proteins (Imamoto et al 1992).
Nuclear cotranslocation of Hsc70 and c-Myc has been
observed in cells transiently overexpressing c-myc even
though c-Myc also bears a NLS itself (Koskinen et al
1991; Henriksson et al 1992). In virus-infected cells, the
adenovirus E1A protein and members of the Hsp70 fam-
ily similarly cotranslocate into the nucleus (White et al
1988). The capacity of Hsp70 to associate with other
celullar proteins and to modify their destiny and func-
tion may be one way to regulate the activity of essential
proteins which are involved in cell cycle regulation. In
addition, specific interactions of Hsc/Hsp70 with various
cell cycle-regulating proteins have been observed, e.g.
with p53 and the retinoblastoma protein pRb (Hainaut
and Milner 1992; Nihei et al 1993; Matsumoto et al 1994;
Inoue et al 1995; Ohnishi et al 1995).

Shi and Thomas (1992) suggested that an increased
constitutive expression of Hsp/Hsc70 might be corre-
lated with an enhanced requirement of nuclear trans-
port capacity. Thus enhanced expression of Hsc70
combined with nuclear accumulation observed in the S
phase of C6 cells may serve an enhanced transport
demand of replicating cells.
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