Supporting Information for

S K-edge XAS and DFT Studies of High and Low Spin {FeNO}⁷ Thiolate Complexes: Exchange Stabilization of Electron Delocalization in {FeNO}⁷ and {FeO₂}⁸

Ning Sun, Lei V. Liu, Abhishek Dey, Gloria Villar-Acevedo, Julie A. Kovacs, Keith O. Hodgson, Britt Hedman, Edward I. Solomon

Estimation of oxidation state using pre-edge transition energy:

The pre-edge energy of the d orbital can be expressed as the energy difference between Fe d orbital and S 1s orbital:

$$E_{\text{pre-edge}} = E_d - E_{1s}(1)$$

Following Zener¹, the energy of the d orbital can be expressed as a function of Z_{eff} :

$$E_d = -cZ_{eff}^2(2)$$

where c is a constant.

Using Slater's screening constants², for Fe d electrons, Z_{eff} can be expressed as function of the oxidation state n:

$$Z_{eff}=5.55+0.35n(3)$$

Combine equations 1-3,

$$E_{\text{pre-edge}} = -c(5.55+0.35n)^2 - E_{1s}.$$
 (4)

The d-hole weighted pre-edge energy ($E_{pre-edge}$) of Fe^{III}-SOR is 2469.8 eV (3 transitions to t₂ hole at 2469.4 eV, 2 transitions to e hole at 2470.5 eV), and the oxidation state n of Fe^{III}-SOR is defined as 3.0. The d-hole weighted pre-edge energy of Fe^{II}-SOR is 2472.5, (2 transitions to t₂ hole at 2472.1 eV, 2 transitions to e hole are calculated by DFT to be higher than t₂ hole by 0.9eV), and the oxidation state is defined as 2.0. Using the value of $E_{pre-edge}$ and n of the reference complexes, we can obtain the value of the constants c and E_{1s}, and then the oxidation state of complex I and II can be obtained using the corresponding value of $E_{pre-edge}$. The oxidation state of complex I is calculated to be 2.75 from equation 4, using the weighted pre-edge energy of 2470.5 eV (3 transitions to t₂ at 2470.1 eV and 2 transitions to e at 2471.0 eV). Similarly, the oxidation state of complex II is calculated pre-edge energy (4 transitions at 2470.5 eV and 1 transition at 2471.6 eV).

MO	Energy (ev)	Fe d (%)	NO 2p (%)
85α	-2.062	42.5	7.7
86α	-0.987	6.2	79.8
87α	-0.797	8.5	79
84β	-1.195	63.8	25.8
85β	-0.988	62.2	26.1
86β	-0.765	62.5	6.6
87β	-0.162	68.9	0

The MO compositions of Complex II (unoccupied) using different basis sets :

Table S2. 6-311+G(3df) for Fe, S, N, O and 6-311+G* for C, H (this study)

МО	Energy (eV)	Fe d (%)	NO 2p (%)
85α	-1.952	42.8	7.1
86α	-1.029	5.9	70.4
87α	-0.828	8.8	74.4
84β	-1.222	61.5	23.9
85β	-1.024	60.4	25.4
86β	-0.871	58.2	10.6
87β	-0.106	66.4	0

The MO compositions of model A and model C:

Table S3.	The	MO	compositions	of	model	А	(thiolates	replaces	by	ammines	in
complex I	I)										

MO	Energy (eV)	Fe d (%)	NO 2p (%)
77α	-9.806	61.5	1.52
78α	-9.396	8.61	83.71
79α	-9.342	7.62	85.11
76β	-9.609	51.23	42.99
77β	-9.571	58.3	34.5
78β	-9.056	67.4	9.91
79β	-8.273	73.75	0

МО	Energy (eV)	Fe d (%)	NO 2p (%)
84α	-6.248	21.27	72.99
85α	-4.609	71.2	0.12
86α	-4.229	57.41	15.52
83β	-5.89	16.49	77.05
84β	-5.841	30.66	56.81
85β	-4.446	71.88	0.02
86β	-3.881	50.7	23.78

Table S4. The MO compositions of model C (thiolates replaces by ammines in complex II + axial ligand)

Occupied orbitals of complex I, complex II and complex II + axial L:

Figure S1. Occupied Fe d and NO π^* orbitals of complex I.

Figure S2. Occupied Fe d and NO π^* orbitals of complex II.

Figure S3. Occupied Fe d and NO π^* orbitals of complex II + axial L.

Figure S4. Geometric parameters of the DFT calculated ${FeO_2}^8$ system of complex I, complex II, and complex II + axial L.

Complete references for Gaussian 03 and 09:

Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.

Gaussian 09, Revision A.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

Optimized geometries:

Complex I			
С	-3.76482	0.29278	-1.13859
Η	-3.24119	0.18065	-2.09055
Н	-4.25053	1.26942	-1.14499
Н	-4.54968	-0.46582	-1.08179
С	-2.78864	0.21765	0.05993
С	-2.04723	-1.11364	0.03144
С	-2.87305	-2.37975	0.02357
Н	-2.60666	-3.02546	0.86548
Н	-2.69272	-2.95578	-0.88935
С	-0.02711	-2.38426	-0.13228
Н	-0.50969	-3.21617	0.38918
С	1.40161	-2.25658	0.42176
Н	1.35351	-2.41236	1.49815
Н	2.01923	-3.07268	0.02650
С	1.99970	-0.18230	2.55784
Н	1.55621	-1.07809	2.99408
Н	2.63270	0.25239	3.33638
Ċ	2.87101	-0.52999	1.34855
H	3.44084	0.35311	1.05067
Н	3.60034	-1.30281	1.62809
N	-0.76564	-1.12985	-0.00121
N	0.90402	0 73294	2 16259
Н	0.06029	0.54909	2.10235
N	2 05785	-0.94602	0 17972
N	1 30669	2 27771	-0 31997
0	1.50009	3 30728	-0 56263
S	-1 64094	1 66426	-0.07661
5 Fe	0 43622	0 72377	-0.08132
C C	-3 57903	0.72577	1 38263
с u	2 01755	0.34074	2 25071
	-2.91755	1 20042	2.23071
	-4.09099	1.30042	1.40001
П	-4.55275	-0.44309	1.46402
П	-3.93939	-2.18520	0.08339
П	-0.01313	-2.00419	-1.19033
C II	1.99813	-0.95545	-2.32022
H	1.50636	-1.91978	-2.43114
H	2.64312	-0.83662	-3.19601
C	2.86318	-0.92345	-1.06090
H	3.44/6/	-0.00015	-1.05411
H	3.57923	-1./566/	-1.08555
N	0.95889	0.10227	-2.25559
H	0.12693	-0.17000	-2.76908
Н	1.28892	0.95402	-2.69942
H	1.14746	1.69848	2.36022
Complex II		· · ·	
Fe	0.00024	-0.59444	0.20377
S	-1.56014	-1.99883	-0.63424
S	1.56205	-1.99838	-0.63255
Ν	-1.45716	0.97163	-0.00759

Ν	1.45618	0.97298	-0.00827
Ν	0.00075	-0.85890	1.96852
0	0.00183	-1.59894	2.89308
С	-3.02242	-0.87892	-0.68005
Н	-3.23901	-0.60249	-1.71873
Н	-3.90137	-1.41436	-0.30424
C	-2.80550	0.34907	0.18826
н	-3 58438	1 11010	0.00844
Н	-2.85481	0.05681	1 24075
C	-1 29324	2 00195	1.21079
н	-2 14588	2.60175	1.00700
и П	-2.14500 1 34720	1 47735	2.01548
II C	-1.34729	2 81250	2.01540
с u	-0.00100	2.01239	1 84288
11 11	-0.00122	2 45740	1.04200
п	-0.00101	2.00218	0.09989
	1.29195	2.00518	1.03700
H	2.14391	2.70047	1.00500
H	1.34692	1.4/866	2.01487
C	-1.32385	1.58/61	-1.3/1/4
H	-1.48630	2.67085	-1.29561
H	-2.12867	1.19681	-1.99821
С	-0.00110	1.26559	-2.08651
Η	-0.00064	0.19830	-2.33692
Η	-0.00161	1.80935	-3.04128
С	1.32163	1.58900	-1.37235
Η	2.12665	1.19922	-1.99920
Η	1.48290	2.67240	-1.29616
С	2.80524	0.35162	0.18673
Η	3.58330	1.11331	0.00620
Η	2.85556	0.05952	1.23922
С	3.02242	-0.87623	-0.68163
Н	3.90295	-1.41020	-0.30741
Н	3.23662	-0.59969	-1.72078
Comp	lex II + axial L (mode	el B)	
Fe	0.02886	-0.63404	-0.08565
S	1.85542	-2.07437	0.05488
S	-1.68855	-2.21403	0.04482
Ν	1.41597	1.07643	-0.11347
N	-1.50641	0.97379	-0.12574
N	0.02151	-0.81416	-1.80325
0	0.11014	-1.57068	-2.70898
Č	2.95211	-0.75879	0.70498
н	2 73702	-0 57538	1 76117
н	3 99366	-1 09243	0.63217
C II	2 80582	0 51007	-0 12429
н	2.00302	1 29721	0.20183
H	3 04507	0 26120	_1 15062
C	1 7/712	1 86863	-1.13902
с и	1.24713 2 0/215	7 62761	-1.33004
и П	2.0421J 1 A156A	2.03204	-1.40449 7 10110
11	1.41304	1.1/930	-2.10449

С	-0.09706	2.58079	-1.57014
Н	-0.10398	2.90404	-2.61886
Н	-0.13069	3.50594	-0.99598
С	-1.39016	1.77662	-1.36734
Н	-2.23714	2.48248	-1.41874
Н	-1.50052	1.07679	-2.19465
С	1.26206	1.91563	1.10610
С	-0.10967	2.56908	1.38061
С	-1.42585	1.81439	1.09751
С	-2.84137	0.29186	-0.14619
Н	-3.61172	1.01614	0.17337
Н	-3.05114	0.02154	-1.18268
С	-2.88547	-0.98310	0.68612
Н	-3.89711	-1.39906	0.61535
Н	-2.68479	-0.77953	1.74109
Н	-0.12033	2.77510	2.45667
Н	-0.14504	3.55169	0.90650
Н	-2.23373	2.56533	1.05575
Н	-1.63179	1.15326	1.93230
Н	1.51458	1.27722	1.94540
Н	2.00973	2.72599	1.06329
Ν	0.01460	-0.54942	1.98386
С	0.00909	-0.53875	3.15542
Complex II	l, S to N (mode	el A)	
Fe	0.00160	-0.72067	-0.03923
Ν	-1.53510	-1.85733	-0.85013
Ν	1.53823	-1.84487	-0.86656
Ν	-1.42568	0.76491	0.07132
Ν	1.42037	0.77079	0.07047
Ν	0.00934	-1.43082	1.56609
0	0.01265	-2.12152	2.49105
С	-2.75521	-0.99982	-1.03710
Н	-2.70221	-0.56196	-2.03461
Н	-3.66652	-1.59947	-0.99507
С	-2.75372	0.06193	0.04662
Н	-3.56362	0.78217	-0.10334
Н	-2.90569	-0.39612	1.02646
С	-1.30166	1.52589	1.36691
Н	-2.15213	2.21215	1.44127
Н	-1.40152	0.80088	2.17570
С	-0.00606	2.32077	1.51523
Н	-0.00646	2.74478	2.52376
Н	-0.00850	3.19017	0.85474
С	1.29325	1.53245	1.36554
Н	2.14026	2.22313	1.43811
Н	1.39804	0.80865	2.17476
С	-1.30298	1.70830	-1.11257
Н	-1.41234	2.73337	-0.75603
Н	-2.14378	1.53182	-1.78257
С	-0.00462	1.53766	-1.90102

Н	-0.00348	0.56002	-2.40572
Н	-0.00630	2.26949	-2.71503
С	1.29440	1.71222	-1.11428
Н	2.13451	1.53646	-1.78530
Н	1.40213	2.73800	-0.75905
С	2.75112	0.07223	0.04851
Н	3.55891	0.79578	-0.09723
Н	2.90106	-0.38706	1.02797
C	2.76097	-0.98755	-1.03723
H	3.67057	-1.58906	-0.98674
Н	2.72004	-0.54794	-2.03446
Н	-1.32739	-2.33817	-1.72413
н	-1 75461	-2 60654	-0 19442
Н	1 75501	-2.60969	-0.22830
н	1 32805	-2 30466	-1 75122
Complex II	+ axial L S to	o N (model C)	1.75122
Fe	0.02674	-0 66990	-0 13036
N	1 6/3/7	-1.02563	-0.01086
N	-1 48541	-2.05657	-0.01080
N	1 37716	-2.05057	-0.04932
N	1.57710	0.89401	-0.03407
IN NI	-1.43329	0.77720	-0.08220
N O	0.00141	-0.79800	-1.09340
0 C	0.16906	-1.03339	-2.09208
	2.77100	-1.10095	0.52008
п	2.03327	-1.03/3/	1.00300
П	3.73304	-1.38828	0.34104
C	2.73649	0.26128	-0.13650
H	3.49842	0.92048	0.29239
H	2.96814	0.15400	-1.19869
C	1.24433	1.85798	-1.17728
H	2.04869	2.59930	-1.09742
H	1.42669	1.28694	-2.08769
C	-0.09244	2.59438	-1.30500
H	-0.09352	3.05599	-2.29797
H	-0.14320	3.43143	-0.61331
C	-1.36401	1.74421	-1.22612
Н	-2.23192	2.41341	-1.18130
Н	-1.45964	1.15574	-2.13839
С	1.25291	1.59682	1.28910
С	-0.12074	2.21035	1.63647
С	-1.42897	1.49036	1.24169
С	-2.75197	0.03304	-0.22170
Н	-3.57817	0.62750	0.18219
Н	-2.94346	-0.09455	-1.28971
С	-2.69301	-1.33060	0.44742
Н	-3.60775	-1.89099	0.23656
Н	-2.59421	-1.24625	1.52755
Н	-0.14313	2.28589	2.72743
Н	-0.15521	3.24117	1.28887
Н	-2.23716	2.23216	1.23671

Η	-1.66898	0.74874	1.99607
Η	1.52539	0.87377	2.05036
Н	1.99956	2.40029	1.31250
Ν	0.00765	-0.96122	1.84958
С	0.00075	-1.36529	2.95255
Η	-1.68858	-2.52119	-0.93303
Η	-1.24765	-2.78562	0.61856
Η	1.45118	-2.68122	0.64194
Η	1.90607	-2.35942	-0.89498

(1) Zener, C. Phys. Rev. 1930, 36, 0051-0056.

(2) Slater, J. C. Phys. Rev. 1930, 36, 0057-0064.

(3) Serres, R. G.; Grapperhaus, C. A.; Bothe, E.; Bill, E.; Weyhermüller, T.; Neese, F.; Wieghardt, K. J. Am. Chem. Soc. **2004**, *126*, 5138-5153.

(4) Praneeth, V. K. K.; Nather, C.; Peters, G.; Lehnert, N. Inorg. Chem. 2006, 45, 2795-2811.

(5) Li, M.; Bonnet, D.; Bill, E.; Neese, F.; Weyhermüller, T.; Blum, N.; Sellman, D.; Wieghardt,

K. Inorg. Chem. 2002, 41, 3444-3456.