Supplementary Data

Title:	In vivo protein tyrosine nitration in Arabidopsis thaliana
Authors:	Jorge Lozano-Juste, Rosa Colom-Moreno and José León
Affiliation:	Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, CPI Ed. 8E, Camino de Vera s/n, 46022 Valencia, Spain

Supplementary data

Supplementary data are available at *JXB* online.

Table S1. Putative Y-nitrated proteins identified from Arabidopsis and the

 corresponding functional Y-nitrated counterparts in other organisms.

 Table S2. Identification of potentially Y nitrated proteins by MALDI-TOF

 peptide fingerprinting of the most abundant 2D gel-excised spots from anti-3-nitroY

 immunoprecipitated Arabidopsis proteins.

 Table S3. Identification of potential targets of 3-amino-Y modification by

 shotgun LC-MS/MS analysis.

Fig. S1. Potential Y nitration targets in glyceraldehyde-3-phopsphate dehydrogenase, serine hydroxymethyltransferase, transketolase, Rubisco large subunit and Rubisco activase are conserved in different plants and other organisms.

Fig. S2. Conservation and structural modeling analysis of plant methionine synthases.

Fig. S3. Alignment of 3D structure models of rat and Arabidopsis glyceraldehyde-3-phosphate dehydrogenases.

Fig. S4. Scheme displaying primary carbon and sulphur metabolism enzymes highlighting those that have been identified in this work as potentially nitrated in Arabidopsis.

Fig. S5. Confirmation of the presence of proteins identified through shotgun proteomic analysis in the immnunopurified nitroproteome. The entire gels for Western blots performed in Fig. 2 are shown to account for specificity of the antibodies.

Fig. S6. ROS and NO detection in roots of wild type plants grown under standard conditions. Nitroblue tetrazolium (NBT) staining of roots at different zones

(A,B). Roots were pre-incubated with 10 U/mL of superoxide dismutase (SOD) prior to NBT staining (C,D). DAF-FM DA staining of roots pre-treated (G,H) or not (E,F) with the NO scavenger cPTIO under UV-illumination (E,G) or bright field (F,H).

		D 4		
Identified Arabidopsis protein	Protein (Organism)	References		
(AGI locus)				
TCPA_ARATH (At3g20050)	T-complex polypeptide 1 alpha subunit TCP-	Suzuki et al., 2005		
	1(Rat ; Human)	Guesquière et al., 2009		
G3PB_ARATH (At1g42970)	Glyceraldehyde-3-phosphate dehydrogenases	Sultana et al., 2006		
G3PA_ARATH (At3g26650)	(Human; Rat)	Guesquière et al., 2009		
G3PC_ARATH (At3g04120)		-		
ATPA_ARATH (AtCg00120)	ATP synthases (Human ; Mouse)	Casoni et al., 2005; Sultana		
ATPB ARATH (AtCg00480)	•	et al., 2006; Zhang et al.,		
ATPG1 ARATH (At4g04640)		2007		
VATB ARATH (At1g76030)				
CAHC ARATH (At3g01500)	Carbonic anhydrases (Human)	Sultana et al., 2006		
CAH2 ARATH (At5g14740)		,		
ENO ARATH (At2g36530)	Enolase (Mouse: Human)	Casoni et al., 2005: Sultana		
		et al., 2006		
CATA3 ARATH (At1920620)	Catalase (Mouse)	Ghosh et al 2006		
PGKH ARATH (At1g56190)	3-phosphoglycerate kinase (Yeast : Human)	Bacharach et al., 1977		
1 0111 <u>-</u> 1 111111 (111ge 0170)		Guesquière et al 2009		
ACA9 ARATH (At3g21180)	Ca-ATPase (Rat)	Knyushko et al. 2005		
HDA5 ARATH ($At5g61060$)	Histone deacetylase HDAC2 (mammals cells)	Ito et al. 2004		
ACT7 ARATH (At5g09810)	Acting (mammals cells · Mouse)	Casoni et al 2005: Zhang et		
$\Delta CT2 \Delta R \Delta TH (\Delta t 3 g 18780)$	Actins (manimals cens, wouse)	al 2007		
TBA6 ARATH ($Atg1/060$)	Tubuling (Pig: Human : mammals cells: Mouse)	Eiore et al. 2006: Zhang et		
TBA3 ARATH (At g_1 , 700)	rubunns (rig, riunan, manimais cens, wouse)	al 2007		
TBRA ADATH (At5 α 44340)		al., 2007		
TBB2 $\Lambda P \Lambda TH (\Lambda 13g44340)$				
TBB1 ADATH ($A(3g02090)$)				
CL NA2 A PATH (Allg/3760)	Clutamina synthetasa (Patt Mouse)	Cörg at al 2006; Zhang at		
OLNA2_ARATH (Al3g55050)	Glutannie Synthetase (Rat, Mouse)	al 2007		
TVW23 $\Lambda P \Lambda TH (\Lambda t/a 0/670)$	t PNA synthetases (Human)	G_{u}		
SVV ADATH (Attac7220)	(Indinan)	Guesquiere et al., 2009		
$STV_ARATH(Attg07220)$				
$HSD82$ ADATH (At5 σ 56010)	Heat shock protain 00 (mammals calls Mouse)	Thang at al 2007		
HSD71 ADATH (At5a02500)	Heat shock 71 kDa protain (Mousa)	Casoni at al. 2005: Zhang at		
HSD72 AD ATH (A+2a00440)	fieat shock /1-kDa protein (Wouse)	casoni et al., 2005, Zhang et		
$A \Delta T5 A D \Delta TH (A t/a 31000)$	Aspertate aminetransferase (Cow: Mouse)	DiCola at al 1076: Zhang at		
AAIJ_AKAIH (Al4g51990)	Aspanale animolialisterase (Cow, Mouse)	al 2007		
MDUD ADATH $(A+2\alpha/7520)$	Malata:NADD - avidaraduatagas (Digaan; Mausa	Chang at al 1080: Zhang at		
$MDHC_{1} A D A TH (A13g4/320)$	Malate: NADP+ 0x1d0reductases (Pigeon; Mouse,	chang et al., 1980; Zhang et		
MDHG1_ARATH (Al3g09000)	Human)	al., 2007		
DU56 ADATU (A+5~11200)	ATD demondent DNA heliogea (Human)	Guesquière et al., 2009		
$RH50_ARATH (Al5g11200)$ $EDV10_ADATH (Al5g11200)$	E Des grateine (Human)	Guesquière et al., 2009		
$FDA10_ARATH (At1g51290)$ $FDK94_ADATH (At4=10965)$	г-вох proteins (пишан)	Guesquiere et al., 2009		
$FBK84_ARATH(A(4g19805))$				
$FBK19_ARATH(At1g32430)$	Flowersting (sector 1 - 1 - 1 - 1 - (Howers))	C		
EFIA_ARIH (Atig0/940)	Elongation factor 1-alpha (Human)	Guesquiere et al., 2009		
$PGMP_ARATH (At5g51820)$	Phosphoglucomutase (Rabbit)	Layne et al., 1979		
2AAA_ARATH (Atlg25490)	Ser/Thr-protein phosphatase (Human)	Guesquière et al., 2009		
$IF3A2_AKA1H$ (At1g26630)	Eukaryotic translation initiation factor (Human)	Guesquiere et al., 2009		
PGKH_ARATH (Atlg56190)	PGK1 Protein (Mouse)	Zhang et al., 2007		
WBC16_ARATH (At3g55090)	ABC transporter	Guesquière et al., 2009		
GBLP_ARATH (At1g18080)	Guanine nucleotide-binding protein beta (Human)	Guesquière et al., 2009		
DRP1D_ARATH (At2g44590)	Dynamin (Mouse)	Zhang et al., 2007		
GBLP_ARATH (At1g18080)	Guanine Nucleotide Binding Protein (Mouse)	Zhang et al., 2007		
SCP37 ARATH (At3g52010)	Carboxypeptidase (Boyine)	Zisapel 1978		

Table S1. Putative Y-nitrated proteins identified from Arabidopsis and the corresponding functional Y-nitrated counterparts in other organisms.

The Y-nitrated proteins identified by LC-MS/MS in immunopurified samples from Arabidopsis seedlings and the corresponding counterparts from different organisms in parenthesis in the second column.

Table S2. Identification of potentially Y nitrated proteins by MALDI-TOF peptide fingerprinting of the most abundant 2D gel-excised spots from anti-3-nitroY-immunoprecipitated Arabidopsis proteins.

Description	AGI code	Mr Theor	Mr Exper	Mascot Score	Peptides (n.r.)	Coverage (%)
Ribulose bisphosphate carboxylase large chain precursor	AtCg00490	52.9	53.4	348	20	41
Ribulose bisphosphate carboxylase/oxygenase activase	At2g39730	52.0	52.3	251	14	50
Serine Hydroxymethyltransferase	At4g13930	51.7	52.1	238	11	25
Glyceraldehyde-3-phosphate dehydrogenase, cytosolic	At3g04120	36.9	37.0	176	11	49
Trigger factor type chaperone family protein	At5g55220	61.7	62.1	120	11	27
Putative microtubule-associated motor	At5g60930	145.2	44.4	101	17	11
Probable 125 kDa kinesin-related protein	At2g36200	119.3	120.4	81	23	26
Carbonic anhydrase, chloroplast precursor	At3g01500	37.4	37.8	78	9	34
Hypothetical 213.7 kDa protein ycf1.2	AtCg01130	213.7	214.6	77	25	12
DNA repair protein RAD50	At2g31970	152.8	153.6	73	22	20
Putative nuclear matrix constituent protein 1-like protein (NMCP1-like)	At5g65770	121.2	121.8	70	21	17
DNA topoisomerase 1	At5g55300	102.8	103.2	69	19	18
Mitochondrial import inner membrane translocase subunit Tim9	At3g46560	10.7	10.9	67	8	78
60S ribosomal protein L3-1 (Protein EMBRYO DEFECTIVE 2207)	At1g43170	44.5	44.7	65	11	23
Glycosyl hydrolase family 1 protein	At5g25980	53.4	54.3	64	7	28
Glycine-rich RNA-binding protein 7	At2g21660	16.8	16.9	64	9	78
Glyceraldehyde-3-phosphate dehydrogenase C-2	At1g13440	36.9	36.9	63	8	22
Transketolase, putative	At3g60750	79.9	80.3	62	12	34
Ras-related protein ARA-4	At2g43130	24.0	24.1	61	10	50
Probable nucleolar GTP-binding protein 1	At1g50920	76.8	77.3	60	17	25
Probable mannitol dehydrogenase	At4g39330	38.9	39.3	59	8	26
Protein AIG1	At1g33960	40.1	40.3	59	13	34
Arginine/serine-rich-splicing factor RSP40	At4g25500	40.1	40.3	59	12	60

Samples containing 3-nitroY immunopurified proteins were separated by 2-DE and identified by MALDI-TOF as described in Materials and Methods. The AGI identifiers for each identified protein are included along with the corresponding Mascot score and

the number of peptides (n.r., non redundant) with matched sequences as well as the sequence coverage (%).

Gliceraldehyde-3-phosphate dehydrogenase

Arabidopsis	DAKAGIALSDKFV <mark>KLVSWYDNEWG<mark>Y</mark>SSRV</mark> VDLIVHMSKA-	338
Nicotiana	$DAKAGIALSKNFVKLVSW$ $\underline{Y}DNEWG$ $\underline{Y}SSRVIDLICHMASVA$	326
Oryza	$DAKAGIALNDNFVKLVAW\mathbf{Y}DNEWG\mathbf{Y}SNRVIDLIRHMAKTQ$	337
Rattus	$DAGAGIALNDNFVKLISW\overline{\mathbf{Y}}DNEYG\overline{\mathbf{Y}}SNRVVDLMAYMASKE$	333
Mus	$DAGAGIALNDNFVKLISW\overline{\mathbf{Y}}DNEYG\overline{\mathbf{Y}}SNRVVDLMAYMASKE$	333
Homo	$DAGAGIALNDHFVKLISW\overline{\mathbf{Y}}DNEFG\overline{\mathbf{Y}}SNRVVDLMAHMASKE$	335
Escherichia	$DAKAGIALNDNFVKLVSW$ $\underline{Y}DNETG$ $\underline{Y}SNKVLDLIAHISK$	331
Saccharomyces	$DASAGIQLSPKFVKLVSW\overline{\mathbf{Y}}DNEYG\overline{\mathbf{Y}}STRVVDLVEHIAKA-$	332
	** *** *. :****::***** ***.:*:*: :::.	

Serine Hydroxymethyltransferase

Arabidopsis	TSGGKKISATSIYFESLPY <mark>KVNFTTGYID<mark>Y</mark>DKLEEKA</mark> LDFRPKLLICGGSAYPRDWDYAR	200
Oryza	TAGGKKISATSIYFESLPYKVSAATG Y ID Y EKLEEKALDFRPKLIICGGSAYPRDWDYAK	200
Rattus	TDK-KKISATSIFFESMPYKVYPDTG Y IN Y DQLEENASLFHPKLIIAGTSCYSRNLDYAR	410
Mus	TDK-KKISATSIFFESMPYKVYPETGYINYDQLEENASLFHPKLIIAGTSCYSRNLDYAR	207
Homo	TDK-KKISATSIFFESMPYKVNPDTG Y IN Y DQLEENARLFHPKLIIAGTSCYSRNLEYAR	213
Nicotiana	TDT-KKISAVSIFFETMPYRLNESTG YID YDQLEKSATLFRPKLIVAGASAYARLYDYAR	243
Saccharomyces	TEN-RKISAVSTYFESFPYRVNPETGIIDYDTLEKNAILYRPKVLVAGTSAYCRLIDYKR	204
Escherichia	SPVNFSGKLYNIVPYGID-ATGHID Y ADLEKQAKEHKPKMIIGGFSAYSGVVDWAK	185
	: :: .** : ** *: <mark>*</mark> **:.* .:**::: * *.* :: :	
Transketolase		
Arabidopsis	VKNGNTGYDETRAATKEAKTVTDKDTLTKVTTTTGYGSDN <mark>KANSYSVHGAALGEKEVEAT</mark>	352
Nicotiana	VKNGNTGYDETRAAIKEAKTVTDKPTMIKVTTTIGEGSPNKANS Y SVHGSALGAKEVEAT	355
Orvza	VKNGNDGYDETRAATKEAKAVTDKPTLIKVTTTIGFGSPNKANS Y SVHGSALGTKEVEAT	355
Saccharomyces	VDKGDDDMESTSSALEKAKI,SKDKPTTTKVTTTIGFGSLOOG-TAGVHGSALKADDVKOL	275
Escherichia	EIDG-HDPOAVKEAILEAOSVKDKPSLIICRTVIGFGSPNKAGKEEAHGAPLGEEEVALA	272
Rattus	VDGHSVEELCKAFGOAKHOPTAIIAKTFKGRGITGIEDKEAWHGKPLPKN	297
Mus	VDGHSVEELCKAFGOAKHOPTAIIAKTFKGRGITGIEDKEAWHGKPLPKN	265
Homo	VDGHSVEELCKAFGOAKHOPTAIIAKTFKGRGITGVEDKESWHGKPLPKN	265
	: .:*: * * * * . ** .* .	
Rubisco large su	bunit	
Chlamydomonas	LSAKNYGRAVYECLRGGLDFTKDDENVNSQPFMRWRDRFLFVAEAIYKAQAETGEVKGH	239
Micromonas		177
Arabidopsis	LSAKNYGRAVYECLRGGLDFTKDDENVNSQPFMRWRDRFLFCAEAIYKSQAETGEI <mark>KGH</mark> Y	239
Oryza	LSAKNYGRACYECLRGGLDFTKDDENVNSQPFMRWRDRFVFCAEAIYKSQAETGEIKGHY	239
Nicotiana	LSAKNYGRAVYECLRGGLDFTKDDENVNSQPFMRWRDRFLFCAEALYKAQAETGEIKGHY	239
Spinacia	LSAKNYGRAVYECLRGGLDFTKDDENVNSQPFMRWRDRFLFCAEALYKAQAETGEIKGHY	239

Chlamydomonas	$\verb"LNATAGTCEEMMKRAVCAKELGVPIIMHDyltgGFTANTSLAIYCRDNGLLLHIHRAMHA$	299
Micromonas	$\verb LNVTAATSEEMIKRTVCAKELGLPIVMHDYITGGFTSNTSLSLYCRDHGLLLHIHRAMHA $	237
Arabidopsis	LNATAGTCEEMIKRAVFARELGVPIVMHDYLTGGFTANTSLSHYCRDNGLLLHIHRAMHA	299
Oryza	LNATAGTCEEMIKRAVFARELGVPIVMHDYLTGGFTANTSLAHYCRDNGLLLHIHRAMHA	299
Nicotiana	${\tt LNATAGTCEEMIKRAVFARELGVPIVMHDyltGGFTANTSLAHYCRDNGLLLHIHRAMHA}$	299
Spinacia	${\tt LNATAGTCED} {\tt MMKRAVFARELGVPIVMHDyltgGFTANTTLSHYCRDNGLLLHIHRAMHA}$	299
Nostoc	$\verb LNVTAPTCEEMLKRAEYAKELKQPIIMHDYLTAGFTANNTLARWCRDNGLLLHIHRAMHA $	300
	. *.*:*:**: *:** **:***:*.**:*.:*: :***:***	

LSAKNYGRAVYECLRGGLDFTKDDENINSAPFORWRDRFLFVADAITKAQAETGEIKGHY 240

Rubisco activase

Nostoc

Chlamydomonas	ARVYDDMVRQWITDTGVDKIGQQLVNARQKVAMPKVSMDLNVLIKYGKSLVDEQENVK 380
Micromonas	$ARV\overline{\mathbf{Y}}DDKVREWIRETGIEAMGPLLVNPKRGSKVTFEPPRMSLDILLQYGKALEMEQENVK 384$
Arabidopsis	A <mark>RVYDDEVRK</mark> FVESLGVEKIGKRLVNSRE-GPPVFEQPEMTYEKLMEYGNMLVMEQENVK 408
Spinacia	ARV Y DDEVRKWVNSVGVDNVGKKLVNSKD-GPPVFEQPEMTLQKLMEYGNMLVQEQENVK 406
Nicotiana	$ARV \mathbf{\overline{x}}$ DDEVRKWVSGTGIEKIGDKLLNSFD-GPPTFEQPKMTIEKLLEYGNMLVQEQENVK 412
Oryza	$arv \overline{\mathbf{x}}$ ddevrkwvsdtgvenigkrlvnsre-gppefeqpkmtieklmeygymlvkeqenvk 399
Nostoc	SRI $\overline{\mathbf{x}}$ DIQIRDFIHKVGFERISLRVVNSLE-APPEFKKPDFSLAHLIESGNLVLGEQQRVD 281
	:*:** :*:: *:: : ::*: : : *:: * : **:.*.

Α

Methionine synthases

AtMS1	ELESTLSGLN-VLVETYFADIPAEAYKTLTSLKGVTAFGFDLVRGTKTLDLVKAG-FPEG 285
AtMS2	ELESTLSGLN-VLVETYFADIPAEAYKTLTSLKGVTAFGFDLVRGTKTIDLIKSG-FPQG 285
StMS	DLESSLSGLN-VLVETYFADVPAEAFKTLTALKGVTAFGFDLVRGTQTLELIKSS-FPSG 285
GmMS	ELAPALSGLN-VLVETYFADIPAEAYKTLTSLNGVTAYGFDLVRGTNTLDLIKGG-FPSG 285
OsMS	ELESALSGLN-VLIETYFADIPAESYKTLTSLNSVTAYGFDLIRGSKTLDLVKSAGFPSG 286
HvMS	ELESTLSGLN-VLVETYFADVPAESYKTLTSLSSVTAYGFDLERGTKTLELVKSG-FPAG 285
ZmMS	ELESSFSGLN-VLIETYFADIPAESYKTLTSLSGVTAYGFDLIRGAKTLDLIRSS-FPSG 285
MET6	YFGEQ-SNLPKITLATYFGTVVPN-LDAIKGLP-VAALHVDFVRAPEQFDEVVAA-IGNK 292
NcMS	AIAAAGDAVPKVVVATYFGDIVHN-FDVLPAFSGAAGLHVDLVRNPEQLEPVLKQ-LGPN 288
	: . : : : ***. : :: .:*: * .: :: : :
AtMS1	K Y LFAGVVDGRNIWANDFAASLSTLQALEGIVGKDKLVVSTSCSLLHTAVDLINETKLDD 345
AtMS2	KYLFAGVVDGRNIWANDLAASLITLQSLEGVVGKDKLVVSTSCSLLHTAVDLINETKLDA 345
StMS	K¥LFAGVVDGRNIWANDLAASLALLQSLEGVVGKDKLVASTSCSLLHTAVDLINETKLDD 345
GmMS	KYLFAGVVDGRNIWANDLAASLTTLQGLEGIVGKDKLVVSTSSSLLHTAVDLVNETKLDD 345
OsMS	KYLFAGVVDGRNIWADDLAASLTTLESLEAIVGKDKLVVSTSCSLMHTAVDLVNETKLDS 346
HvMS	KYLFAGVVDGRNIWADDLAASLATLQSLEAIVGKDKLVVSTSCSLMHTAVDLVNETKLDD 345
ZmMS	KYLFAGVVDGRNIWADDLAASLSTLHSLEAVAGKDKLVVSTSCSLMHTAVDLVNETKLDD 345
MET6	QTLSVGIVDGRNIWKNDFKKSSAIVNKAIEKLGADRVVVATSSSLLHTPVDLNNETKLDA 352
NcMS	QILSAGVVDGRNIWKNDFAKSLEILQTAVKALGSERVIVATSSSLIHTPHTLASEKKLPS 348
	* * * * * * * * * * * * * * * * * * * *

Β

Α

Β

Figure S5

