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1 Model and Estimation Method

In this section we introduce and explain the underlying mathematics of our model, and
introduce a novel heuristic approach to efficiently estimate the model parameters. The
primary motivation of fitting our model to input data is to predict the network of connectivity
between modifiers, TFs, and target genes. We use the same notation here as in the main
text, with vectors and matrices denoted in bold. See Tables S1 and S2 for a guide to our
notation.

1.1 Primary Model Equations

The model is described concisely by the following equations and notation. Given target genes
of interest indexed by i from 1 to N , TFs of interest indexed by j from 1 to J , and modifiers
of interest indexed by k from 1 to K, with expression measured under conditions indexed
by t from 1 to T : let g denote the N × T expression matrix for target genes with values
git; let f denote the J × T expression matrix for TFs with values fjt; and let h denote the
K × T expression matrix for modifiers with values hkt. Thus, the first step of the modeling
procedure is the selection of an appropriate set of candidate TFs, modifiers, and target genes
for the network of interest. In particular, the target genes i should not overlap with the TFs
j or modifiers k. The model defines each gene expression value git as a function of TF and
modifier activities:

git = αi +
J∑
j=1

βjCijfjt +
J∑
j=1

K∑
k=1

γjkCijDjkΦ(fjt, hkt) + εit (1.1)

Eq 1.1 is applied to all genes i from 1 to N and all samples t from 1 to T . The term
αi represents a baseline expression value for gene i independent of condition. The term βj
is a scaling factor for TF j to describe its influence on all target genes. The terms Cij,
denoted collectively by the N × J matrix C, are binary variables indicating whether each
TF j regulates the expression of each gene i. Modifiers do not influence target genes directly
in our model. Rather, they influence target genes indirectly through their effects on TF
activity. The terms Djk, denoted collectively by the J ×K matrix D, are binary variables
indicating whether each modifier k has a synergistic effect on the activity of each TF j. The
nature of these synergistic effects are described in general as a function of expression values,
denoted by Φ, discussed in more detail below. The term εit refers to the residual error of the
model fit for each git. This term captures technical and biological noise as well as non-model
behavior and is sampled from the normal distribution with model-wide variance σ2:

εit ∼ N(0, σ2) ∀i, t (1.2)

The interaction function Φ is generally intended to be non-linear in order to capture
“synergistic” effects of TF-Modifier relationships. The function can be applied prior to
model fitting and therefore does not alter the complexity of the computations discussed in
subsequent sections. We use the following function in order to capture a synergistic effect
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which is positive only when both input expression values are positive, and negative in all
other cases:

Φ(f, h) = sign(min(f, h))|f ∗ h| =
{

f ∗ h iff f, h > 0

−|f ∗ h| otherwise
(1.3)

This function is intended for normalized expression profiles with mean 0 (see Sec 2),
and has the preferable behavior that it returns positive values only when f and h are both
positive (high expression). This function is based on the biological intuition that synergistic
effects only occur when both members are sufficiently expressed, and has been successful in
our applications. However, it does not have a symmetric intuition for negative synergistic
effects, i.e. when γjk < 0, this intuition may be lost. Ideally, we want a non-linear function
that is also monotonic in both f and h, and which fits our biological intuitions for both
positive and negative values of γjk. We leave the identification of such a function for future
work, but also note that the rest of our methodology is independent of the choice made for
this function.

The model also allows the consideration of other types of high-throughput data, in addi-
tion to expression. Let b and m denote two N×J matrices of prior probabilities for C based
on different types of biological data, i.e. using binding data (i.e. ChIP-chip or ChIP-seq) for
b and Positional Weight Matrices (PWMs) applied to promoter sequence data for m. The
entries in these matrices are denoted bij and mij respectively. Likewise, J ×K matrices a
(protein array, functional association, or interaction data) and s (substrate-prediction) can
be defined as priors for D. The variable matrices C and D in the model are given prior
probabilities based on a weighted mixture of all available biological priors, as follows:

P (Cij = 1) = b
wj

ij m
(1−wj)
ij (1.4)

P (Djk = 1) = auk
jk s

(1−uk)
jk (1.5)

The weight variables, denoted collectively as w and u, each range from 0 to 1 and are
also estimated as part of the model-fitting procedure. Thus, no prior assumptions need to
be made about the relative quality of each prior source. Note that there are separate weight
variables wj and uk for each TF j and modifier k respectively. This was chosen because
the quality of a given PWM or ChIP-chip result set will typically vary more widely by TF,
rather than by target gene. Likewise, the PWM or interaction assay data for modifiers is also
assumed to vary more widely by modifier, rather than by substrate or interaction partner.
When only a single type of prior is available for either C or D, the equations above simplify
to an unweighted use of the priors.

Also note that given any full instantiation of values for C and D, Eq 1.1 becomes a linear
regression and can be solved using a standard closed-form solution. Although this problem
can be solved as a linear regression, the relationship between target gene, TF, and modifier
expression values is non-linear because of the synergy function Φ.
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1.2 Model Posterior

As in the main text, let Θ denote the set of model parameters (α,β,γ, σ,w,u), excluding C
and D. Let Ξ denote the complete set of biological data sources (g, f ,h,b,m, a, s). Thus, the
model can be completely described by the set (Ξ,Θ,C,D). The relative posterior probability
of a model configuration, given a set of biological data is:

P (Θ,C,D|Ξ) ∝ P (g|f ,h,C,D,Θ) ∗ P (C|m,b,w) ∗ P (D|a, s,u) ∗ P (Θ) (1.6)

Or, put another way, the posterior probability of a model given data is proportional to the
product of the gene expression likelihood, the edge likelihoods, and the remaining parameter
priors. These terms are further defined as:

P (g|f ,h,C,D,Θ) =
N∏
i=1

T∏
t=1

(2πσ2)−1/2 exp

[
−1

2σ2
ε2
it

]

P (C|m,b,w) =
N∏
i=1

J∏
j=1

[
b
Cij

ij (1− bij)1−Cij

]wj
[
m
Cij

ij (1−mij)
1−Cij

]1−wj

P (D|a, s,u) =
J∏
j=1

K∏
k=1

[
a
Djk

jk (1− ajk)1−Djk

]uk
[
s
Djk

jk (1− sjk)1−Djk

]1−uk

P (Θ) =
N∏
i=1

(τ 2
α)−1/2 exp

[
−1

2τ 2
α

α2
i

]
∗

J∏
j=1

(τ 2
β)−1/2 exp

[
−1

2τ 2
β

β2
j

]

∗
J∏
j=1

K∏
k=1

(τ 2
γ )−1/2 exp

[
−1

2τ 2
γ

γ2
jk

]
∗ (σ2)−2 exp

[
−1

2σ2

]
The priors on all model parameters in Θ are the same as in [1]. α, β, and γ are assumed

to have normal priors with standard deviations τα, τβ, and τγ respectively. The τ hyper-
parameters are set to large values, i.e. 10000, to make the parameter priors uninformative.
The model-wide variance, σ2, is assumed to have a prior defined by the χ2

ν distribution with
ν = 2. The weight variables w and u are given uniform priors in the range (0, 1).

1.3 Individual Parameter Posteriors

Solving for the full posterior distribution (Eq 1.6) analytically is an intractable problem.
However, it is possible to compute an “individual posterior” on each model parameter given
the biological data and fixed values for all other model parameters. These equations form
the basis for iterative approaches to estimating the model parameters.

First, let Θ{−Q} denote the set of all parameters in Θ except some individual parameter
Q. Let ε′it[Q = q] denote the residual error of gene i in sample t when some model parameter
Q is changed to value q. The posterior distribution for a particular αi given all expression
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data and all other model parameters is:

P
(
αi = q|Ξ,C,D,Θ{−αi}

)
∝ exp

[
−1

2σ2

T∑
t=1

ε′it[αi = q]2

]
∗ exp

[
−1

2τ 2
α

q2

]
(1.7)

This distribution can be sampled as a normal distribution with mean µαi
and variance να:

µαi
=

να
σ2
∗

T∑
t=1

ε′it[αi = 0] (1.8)

να = (T/σ2 + 1/τ 2
α)−1 (1.9)

Alternatively, the value of αi can be chosen to maximize the posterior by setting αi = µαi
.

Also note that for an “unregulated” gene, i.e. a gene i such that Cij = 0 ∀j, Eq 1.8 simplifies
to an estimate of the mean expression for gene i:

µα =
1

T + σ2/τ 2
α

T∑
t=1

git

Similarly, the individual posterior for βj is:

P (βj = q|Ξ,C,D,Θ{−βj}) ∝ exp

[
−1

2σ2

N∑
i=1

T∑
t=1

ε′it[βj = q]2

]
∗ exp

[
−1

2τ 2
β

q2

]
(1.10)

Therefore, we can resample βj ∼ N(µβj
, νβj

) with mean and variance defined as:

µβj
=

νβj

σ2

N∑
i=1

T∑
t=1

ε′it[βj = 0] ∗ Cijfjt (1.11)

νβj
=

(∑N
i=1

∑T
t=1(Cijfjt)

2

σ2
+

1

τ 2
β

)−1

(1.12)

Once again, the posterior can be maximized by setting βj = µβj
. Also note that µβj

= 0
and νβj

= τ 2
β when Cij = 0 ∀i. In other words, when TF j does not regulate any genes, its

posterior becomes equivalent to its uninformative prior. Similar equations are derived below
for resampling or maximizing the individual posterior of γjk. In this case, the posterior is
equivalent to the the uninformative prior whenever Cij = 0 ∀i or when Djk = 0.

P (γjk = q|Ξ,C,D,Θ{−γjk}) ∝ exp

[
−1

2σ2

N∑
i=1

T∑
t=1

ε′it[γjk = q]2

]
∗ exp

[
−1

2τ 2
γ

q2

]
(1.13)

µγjk
=

νγjk

σ2

N∑
i=1

T∑
t=1

ε′it[γjk = 0] ∗ CijDjkΦ(fjt, hkt) (1.14)

νγjk
=

(∑N
i=1

∑T
t=1 (CijDjkΦ(fjt, hkt))

2

σ2
+

1

τ 2
γ

)−1

(1.15)
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The individual posterior for the model-wide residual error variance, σ2, given all input
data and all other parameters is:

P (σ2|Ξ,C,D,Θ{−σ2}) ∝ (σ2)−(TN
2

+2) ∗ exp

[
−1

2σ2

N∑
i=1

∑
t = 1T ε2

it

]
∗ exp

[
−1

2σ2

]
(1.16)

The above equation implies that σ2 can be sampled from a scaled-inverse χ2 distribution
with degrees of freedom parameter TN + 2 and scale parameter s2 defined in Eq 1.17 below.
This posterior can be maximized by setting σ2 = s2.

s2 =
1 +

∑N
i=1

∑T
t=1 ε

2
it

TN + 2
(1.17)

The C and D variables are binary, and therefore we only need to determine the relative
probability of values 1 and 0 for each variable. For Cij, the individual posterior is given by
Eq 1.18 for q ∈ {0, 1}:

P (Cij = q|Ξ,C{−Cij},D,Θ) ∝ exp

[
−1

−2σ2

T∑
t=1

ε′it[Cij = q]2

]
∗
[
bqij(1− bij)1−q]wj ∗

[
mq
ij(1−mij)

1−q]1−wj

(1.18)

To find the exact posteriors for Cij = 0 and Cij = 1, we first compute the proportional

probability values Z
(Cij)
0 and Z

(Cij)
1 , respectively:

Z
(Cij)
0 = exp

[
−1

−2σ2

T∑
t=1

ε′it[Cij = 0]2

]
∗ (1− bij)wj (1−mij)

1−wj (1.19)

Z
(Cij)
1 = exp

[
−1

−2σ2

T∑
t=1

ε′it[Cij = 1]2

]
∗ bwj

ij m
1−wj

ij (1.20)

Therefore, Cij can be resampled by setting Cij = 1 with probability
Z

(Cij)

1

Z
(Cij)

0 +Z
(Cij)

1

and can

be maximized by setting Cij = 1 iff Z
(Cij)
1 > Z

(Cij)
0 . Using a similar posterior equation for

Djk yields ζ
(Djk)
0 and ζ

(Djk)
1 analogous to Z

(Cij)
0 and Z

(Cij)
1 respectively:

ζ
(Djk)
0 = exp

[
−1

−2σ2

N∑
i=1

T∑
t=1

ε′it[Djk = 0]2

]
∗ (1− ajk)uk(1− sjk)1−uk (1.21)

ζ
(Djk)
1 = exp

[
−1

−2σ2

N∑
i=1

T∑
t=1

ε′it[Djk = 1]2

]
∗ auk

jk s
1−uk
jk (1.22)
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The individual posteriors of the weight parameters wj and uk are independent of the
expression data and other parameters because all edge variables in C and D have defined
values. The individual posterior distributions are calculated as follows:

P (wj|C,b,m) ∝

[∏N
i=1 b

Cij

ij (1− bij)1−Cij

]wj

∗
[∏N

i=1m
Cij

ij (1−mij)
1−Cij

]1−wj

∏N
i=1

[
b
wj

ij m
1−wj

ij + (1− bij)wj (1−mij)1−wj

] (1.23)

P (uk|D, a, s) ∝

[∏J
j=1 a

Djk

jk (1− ajk)1−Djk

]uk

∗
[∏J

j=1 s
Djk

jk (1− sjk)1−Djk

]1−uk

∏J
j=1

[
auk
jk s

1−uk
jk + (1− ajk)uk(1− sjk)1−uk

] (1.24)

We use grid sampling to estimate the distribution of wj or uk. We describe the process,
without loss of generality, for a single parameter wj. First, we define p̂λ = P (wj = λ|C,b,m)
(Eq 1.23) for all λ values in {0.01, 0.02, . . . , 0.99}. These values are then normalized to
probabilities: pλ = p̂λ/

∑
λ p̂λ. We then sample wj from all possible values of λ, each

with probability pλ. Alternatively, we can maximize the posterior of wj by selecting the
wj = arg maxλ (pλ).

1.4 Model Estimation Method

The equations described above can be used in a standard iterative framework, such as Gibbs
Sampling [2] or hill-climbing. However, the posterior distributions relevant to this model
are typically highly multi-modal. This results in many regions of the parameter space that
are “locally good”, i.e. they are considerably more likely than similar model configurations.
In other words, there are often multiple solutions for fitting the model to a given set of
input data, which are substantially different and roughly equal in their “goodness of fit”.
This presents a problem for normal statistical learning techniques, as maximization-based
techniques are only guaranteed to find local optima, and sampling techniques require an
impractical number of iterations to fully explore such a parameter space.

We present here a heuristic approach that combines several statistical learning approaches
to produce a good fit of the network model to the input data, with partial or local estimates
for key variables of interest. This algorithm can subsequently be run multiple times to more
fully explore the solution space in a scalable and robust manner. Note that each run of
this algorithm explores only the local solution space around a single mode. The problem
of multiple solution modes is handled when combining estimates from multiple runs of this
algorithm, and this step is discussed in more depth in Sec 1.5.

The algorithm presented here is run in 3 phases, described below. In the first phase, a
fixed starting network is selected and other model parameters are fit to this network using
a closed form solution. In the second phase, all model parameters, including network edges,
are iteratively maximized until sufficient convergence at a local optimum. In the third phase,
model parameters of interest are iteratively resampled a fixed number of times to provide a
more robust estimate around the local optimum.
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Phase 1: Model Initialization

To seed the algorithm, an initial network (C,D) is selected. The simplest way to select this
network is deterministically, by setting a threshold q on the geometric mean prior of each
edge, i.e. Cij = 1 if and only if

√
bijmij ≥ q. Note that using the geometric mean of priors is

equivalent to assuming wj, uk = 0.5 ∀j, k, and these parameters are initialized accordingly.
The threshold approach is generally appropriate for the first few runs of the estimation

algorithm. For increased exploration of the solution space away from the most strongly
predicted prior network, this initial deterministic starting network can be perturbed by
randomly flipping the state of some fixed proportion of edges. For a more stochastic starting
network, each edge parameter can be randomly sampled according to the geometric mean of
its priors, i.e. P (Cij = 1) =

√
bijmij.

Given a fixed network (C,D), the parameters (α,β,γ) can be fit using the Ordinary
Least Squares (OLS) solution to linear regression. To add a stochastic aspect to the selection
of values for these parameters, the best-fit values can be perturbed by adding noise sampled
from a normal distribution with µ = 0 and small ν (i.e. 0.05). The model-wide variance is
always initialized by σ2 = s2 (from Eq 1.17).

Phase 2: Local Maximization

Given initial values for all model parameters, it is now possible to compute the individual
posterior of any model variable according to the equations in Sec 1.3. A hill-climbing algo-
rithm is run from the starting point, such that each parameter is reassigned by maximum
likelihood as derived from the equations above:

• Set each αi = µαi
(from Eq 1.8)

• Set each βj = µβj
(from Eq 1.11)

• Set each γjk = µγjk
(from Eq 1.14)

• Set σ2 = s2 (from Eq 1.17)

• For each Cij:

– Compute Z
(Cij)
0 , Z

(Cij)
1 (from Eq 1.19, 1.20)

– Set Cij = 1 iff Z
(Cij)
1 > Z

(Cij)
0 , otherwise set Cij = 0

• For each Djk:

– Compute ζ
(Djk)
0 , ζ

(Djk)
1 (from Eq 1.21, 1.22)

– Set Djk = 1 iff ζ
(Djk)
1 > ζ

(Djk)
0 , otherwise set Djk = 0

• Set each wj = arg maxλ (pλ) (from Eq 1.23).
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• Set each uk = arg maxλ (pλ) (from Eq 1.24).

• Repeat until convergence

The hill-climbing algorithm is run until the model parameters converge on an optimal
solution. Convergence is determined by tracking the log of the model likelihood (rather than
the model posterior, because the parameter priors are constant), given by Eq 1.25 below.
Convergence is assumed when ∆ ln(L) < 0.0001 (approximately 0).

ln(L) =
−NT

2
ln
(
2πσ2

)
− 1

2σ2

N∑
i=1

T∑
t=1

ε2
it

+
N∑
i=1

J∑
j=1

wj [Cij ln(bij) + (1− Cij) ln(1− bij)] + (1− wj) [Cij ln(mij) + (1− Cij) ln(1−mij)]

+
J∑
j=1

K∑
k=1

uk [Djk ln(ajk) + (1−Djk) ln(1− ajk)] + (1− uk) [Djk ln(sjk) + (1−Djk) ln(1− sjk)]

(1.25)

Phase 3: Local Network Estimation

The final phase of the algorithm collects local samples of specific variables of interest, notably
C and D, while leaving other parameters, notably α and β, fixed at the values identified in
phase 2. This results in a single estimate for each parameter in α and β, and fixing these
variables helps to anchor the subsequent sampling iterations around the local optimum. The
γ parameters must also be resampled in this phase, to allow for informative estimation of
D. Specifically, if a parameter γjk = 0 at the end of phase 2, and if this value remains fixed,
then the posterior for Djk becomes equivalent to its prior, and therefore uninformative. The
variables σ2, w, and u are also resampled, to allow for more robust resampling of C and D.
These variables are resampled in the same order as they were maximized in phase 2, using
sampling rules derived from the equations above. This phase of the algorithm is repeated a
fixed number of times:

• Sample each γjk ∼ N(µγjk
, νγjk

) (from Eq 1.15, 1.14)

• Sample σ2 from the scaled-inverse χ2 distribution with TN + 2 degrees of freedom and
scale parameter s2 (from Eq 1.17)

• Sample each Cij from the Bernoulli distribution with p =
Z

(Cij)

1

Z
(Cij)

1 +Z
(Cij)

0

(from Eq 1.19, 1.20)

• Sample eachDjk from the Bernoulli distribution with p =
ζ
(Djk)

1

ζ
(Djk)

1 +ζ
(Djk)

0

(from Eq 1.21, 1.22)

• Sample each wj using grid sampling as described for Eq 1.23
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• Sample each uk using grid sampling as described for Eq 1.24

The output of a single run of this algorithm is a set of locally optimal fixed values for
parameters α and β, denoted from here on as α̂ and β̂, and a fixed number of samples for
all other parameters. To avoid auto-correlation between the samples, a lag is introduced,
such that samples are only used for model inference every ` iterations, and all other samples
are dropped. From here on, let X denote the number of samples used for model inference,
and let x denote a specific sample from 1 to X. In other words, phase 3 is run for a total of
`×X iterations, but only X samples (every `th iteration) are used for model inference.

1.5 Model Inference

Using a single run of the algorithm outlined above, we can obtain a maximum a posteriori
(MAP) value for each parameter αi and βj from α̂ and β̂ fixed at the end of phase 2.
Subsequently, we can compute partial posteriors for all other parameters, given both the
input data, and these MAP values. The partial posterior for the remaining model parameters
is:

P̂ (C,D,γ, σ2,w,u|Ξ, α̂, β̂) (1.26)

However, we are generally more interested in computing this partial posterior for each pa-
rameter, marginalized over all other parameters. For example, to estimate the probability of
a particular TF-Gene edge Cij, we would need to compute P̂ (Cij|Ξ, α̂, β̂). The marginalized
partial posteriors are computed from the X samples computed in phase 3, with [x] denoting
the value of a particular parameter in sample x, as follows:

P̂
(
Cij = 1|Ξ, α̂, β̂

)
= I

(
β̂j 6= 0

) 1

X

X∑
x=1

Cij[x] (1.27)

P̂
(
Djk = 1|Ξ, α̂, β̂

)
=

1

X

X∑
x=1

I (γjk[x] 6= 0)Djk[x] (1.28)

Ê
(
γjk|Ξ, α̂, β̂

)
=

1

X

X∑
x=1

I (Djk = 1) γjk[x] (1.29)

Ê
(
σ2|Ξ, α̂, β̂

)
=

1

X

X∑
x=1

σ2[x] (1.30)

Ê
(
wj|Ξ, α̂, β̂

)
=

1

X

X∑
x=1

wj[x] (1.31)

Ê
(
uk|Ξ, α̂, β̂

)
=

1

X

X∑
x=1

uk[x] (1.32)
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The function I denotes the identity function, and returns 1 if the specified condition is
true, or 0 otherwise. Eq 1.27 corresponds to the probability that TF j regulates gene i.
Eq 1.28 corresponds to the probability that modifier k has a synergistic effect on the activity
of TF j. Eq 1.29 corresponds to the expected value of γjk for a particular synergistic effect,
and the magnitude of this value can be used as an additional filter to select only those TF-
Modifier edges with substantial effects on target gene expression. In this work we typically
use a threshold of |γjk| ≥ 0.05 to rule out TF-Modifier connections with inconsequential
effects on target gene expression. In general, βj = 0 (TF j has no influence on target genes)
is considered equivalent to Cij = 0 ∀i (TF j has no target genes), and γjk = 0 (TF j and
modifier k do not have a synergistic effect) is considered equivalent to Djk = 0 (TF j and
modifier k do not interact). These equivalencies are built into the inference calculations
above. Eq 1.31 is used to estimate the relative quality of priors for each TF j, with values
> 0.5 favoring b and values < 0.5 favoring m. Likewise, Eq 1.32 estimates the relative
quality of priors for each modifier k, with values > 0.5 favoring a and values < 0.5 favoring
s. Thus, given a compendium of reliable experimental data as input, the parameters of this
model can be fit to the data in order to make inferences about the underlying biological
network.

Multiple Result Summarization

Running the three-phase algorithm multiple times is likely to give varying solutions to the
fitting problem, especially when each run is initiated with a semi-random set of parameters.
While the results of individual chains may be of interest, there is a need to summarize across
multiple results in order to score each edge in terms of how likely it is overall given the
results of multiple runs. We do this by simply averaging together the expected or fixed value
of each parameter in Θ and averaging together the estimated posterior probabilities for each
edge variable in (C,D).

The averaging method is only valid under the assumption that all individual result sets
are similar - i.e. each is an estimate around the same mode of the solution space. To
assess the validity of this assumption, we perform hierarchical clustering [3] of the individual
network models returned by each run of the algorithm. Multi-modal posteriors typically arise
in our model when several disparate networks can explain the available data. Therefore, we
use the vector of posterior probabilities assigned to all edge variables (C,D) to represent
each model and then compute the Euclidean distance between all pairs of models. From this
distance matrix we perform complete hierarchical clustering as implemented in R [4] and
visually inspect the resulting tree. If the overall tree structure does not show any clearly
delineated clusters, then the computed network models most likely represent estimates of the
same solution mode and can be averaged together for a more robust estimate. The clustering
results from our Yeast application exemplify this criteria (see Section 4).

Conversely, if the tree shows several well-separated clusters, then the computed network
models were most likely sampled from multiple divergent solution modes. In this case, we
select an appropriate height cut-off for clustering the models, and then average together and
perform biological inference separately within each cluster. The clustering results from our
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human B cell application appear to be multi-modal based on this criteria (see Section 5).
At this time we do not have a solution for summarizing over multiple modes, and prefer
instead to analyze the biological significance of each cluster individually. It is possible that
the underlying or “true” network that produced the input data is non-constant, possibly
due to a mixture of cell types or genetic backgrounds included in the input data, or due
to biological behavior not captured by the model. In this case each mode may capture a
different static view of the dynamic network. The phenomenon of multi-modality can also
occur due to violations of model assumptions, e.g. a TF acting as activator for one set of
genes and repressor for another. Thus, considering multiple modes in the parameter space
allows us to overcome these model limitations and identify both activated and repressed TF
targets.

2 Data Sources and Pre-Processing

In this section, we describe all procedures used to prepare input data for the MONSTER
applications. We begin with several general rules relevant to all applications, and then cover
specific details for each application.

When defining the expression matrices, the genes used as transcription factors (TFs) and
modifiers for a particular model application are always completely excluded from the set of
target genes. This is necessary because we use the expression data as a proxy for activity
of these regulators and attempting to simultaneously model their transcriptional regulation
would more likely result in false positive connections. However, this limitation could be
overcome if both protein-level and transcript-level measurements were available for TFs and
modifiers in all conditions.

In order to derive PWM-based priors of any kind for TF-Gene or TF-Modifier edges),
each PWM is scanned along a DNA or protein sequence to compute a score at each possible
PWM-sequence alignment. Each score can be converted to a p-value by comparing it to a
distribution of scores computed for some set of background sequences (e.g. random genomic
or protein sequences). This procedure is described in more detail by Levy, et al. [5], and
the specific background sequences used are noted in each appropriate section. A conversion
from p-values to prior probabilities was first introduced by Chen, et al. [1], and is reviewed
here where applicable (Eq 2.2 and 2.3).

As noted by Chen, et al. [1], all priors (PWM-based or otherwise), must be “trimmed”
so that they do not include extreme values of 0 or 1, as these prevent further estimation of
posteriors by our model. We limit the range of all priors to (0.05, 0.95) for all applications.
The distributions of all priors are shown in Figures S3 and S4, and explained in more detail
below.

2.1 Simulated Data

Simulated data was generated according to model equations (Sec 1.1) in order to test the
accuracy of the model-fitting method (Sec 1.4). The initial simulated network had N = 200
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target genes, J = 10 TFs, K = 100 modifiers, and T = 100 conditions. The expression
values for all TFs and modifiers in all conditions (f and h) were randomly sampled from
the normal distribution N(0, 1). The edge indicator variables Cij and Djk were selected at
random with the following constraints:

• Each TF regulates at least 50 and at most 100 genes: 50 ≤
[∑N

i=1Cij

]
≤ 100 ∀j

• Each TF is targeted by at least 1 and at most 20 modifiers: 1 ≤
[∑K

k=1Djk

]
≤ 20 ∀j

• Each modifier targets at least 1 and at most 3 TFs: 1 ≤
[∑J

j=1Djk

]
≤ 3 ∀k

Each parameter βj was randomly sampled from the normal distribution N(0, 0.3), but was
resampled whenever |βj| < 0.05. Each parameter γjk for which the corresponding Djk = 1
was randomly sampled following the same procedure used for the βj variables. The prior
matrices (b,m, a, s) were all randomly sampled using the standard Beta distribution to
generate priors that are correlated to the intended network, but also contain a substantial
amount of noise. Each prior value was sampled as follows:

bij,mij ∼ B(z, 1) ∀(i, j) : Cij = 1

bij,mij ∼ B(1, z) ∀(i, j) : Cij = 0

ajk, sjk ∼ B(z, 1) ∀(j, k) : Djk = 1

ajk, sjk ∼ B(1, z) ∀(j, k) : Djk = 0

Note that in the equations above, B denotes a standard probability distribution (the
“Beta” distribution) and should not be confused with our prior matrix b or the model
parameters β. The variable z is randomly sampled from the uniform distribution U(1.2, 1.5)
independently for each column of each matrix, in order to create varying prior “quality” for
each TF and each modifier.

The expression values for all genes in all conditions (g) were computed according to
Eq 1.1 with all residual error terms εit initially set to 0. Additional versions of g were
calculated with residual errors randomly sampled according to Eq 1.2 using increasing values
of σ2 = 0.05, 0.1, . . . , 0.95, 1, denoted gσ2=0.05, etc.

For subsequent simulations, the input data was expanded to include either additional,
uninformative target genes, or additional, uninformative conditions. In both cases, the
matrix gσ2=1 was used as a starting point, so these subsequent simulations also include a
considerable amount of noise in the informative target genes and conditions.

To add additional, uninformative target genes, the model was expanded to include N =
N0 + N ′ target genes, where N0 = 200 for the original, informative target genes, and N ′ =
20, 40, . . . , 200 for the additional, uninformative genes. All uninformative expression values
randomly sampled from N(0, 1). In other words, each additional gene profile was completely
random, with no information related to the network structure.

To add additional, uninformative conditions, the model was expanded to include T = T0+
T ′ conditions, with T0 = 100 for the original, informative conditions, and T ′ = 10, 20, . . . , 100
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for the additional, uninformative conditions. All expression values in the uninformative
conditions were sampled from the distribution N(0, 1). In other words, each additional
condition contained completely random expression values, with no information related to
network structure.

2.2 Yeast Application

Yeast Expression Compendium

In the yeast application, we derived the expression matrices g, f , and h from a compendium
of T = 314 microarray samples, previously compiled and normalized by Chen, et al. [1]. The
matrix f contains expression profiles for the TFs MSN2 (YMR037C) and MSN4 (YKL062W).
Table S3 lists the 40 known targets of MSN2/4 and 40 decoy targets contained in matrix g,
and the 81 kinases contained in matrix h.

An additional “z-score” normalization was applied to expression profiles for each gene,
TF, and modifier. This step is necessary to strengthen the assumption of uniform model-wide
error variance (Eq 1.2). This normalization also strengthens our assumption that the prior
distribution for each α is centered at 0, and helps remove differences in mean and variance
from skewing the β and γ parameters. Thus, the normalized values can be thought of as
expression relative to the normal range observed for each particular gene in the conditions
tested, and our regression parameters are therefore also on a scale of relative influence. The
normalization is shown for target genes in Eq 2.1, although the same process was also applied
to values of fjt and hkt accordingly:

git =
g

(raw)
it − µ(raw)

gi

σ
(raw)
gi

∀i, t (2.1)

MSN2/4-Target Gene Priors from PWMs

In the yeast application, we used a single matrix m for TF-Gene priors. To derive this matrix,
we used PWMs for MSN2 and MSN4 previously computed by Harbison, et al. [6]. For each
TF-Gene pair (i, j), we scanned both strands of the 700bp upstream region for each gene i,
and recorded the best (maximum) PWM score, denoted as Sij. We then scanned the same
PWMs against the promoter regions of all (∼6000) yeast genes to generate a background
score distribution for each PWM, thereby allowing us to convert each score Sij to a p-value
Pij [5]. We then converted each p-value to a prior probability following the same equation
used by Chen, et al. [1]:

mij = (1− Pij)2[`−Wj+1] (2.2)

In this case, ` = 700 is the fixed promoter length, and Wj is the width (in bases) of the
PWM corresponding to TF j. The distribution of these priors is shown in Figure S3.
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Kinase-Substrate Priors from PWMs

We generated a single matrix s of priors for TF-Kinase connectivity by scanning each TF
protein sequence with a PWM describing the predicted substrate specificity of each ki-
nase. We first acquired the protein sequence of each known kinase present in our expression
compendium from the Saccharomyces Genome Database (SGD) [7] on 7/28/08. We then
submitted each sequence to the Predikin v2.0 web server [8].

Briefly, Predikin takes a kinase protein sequence as input, and constructs a predicted
substrate profile, as a PWM, from the known substrates of related kinases. See [8] for
further details. Thus, for each kinase protein sequence, Predikin returns a predicted PWM
describing the most likely protein sequences to be targeted by that kinase. Kinases for which
the Predikin server failed were discarded from our input set.

Next, we obtained the protein sequences for the TFs MSN2 and MSN4, also from the
SGD [7] on 7/28/08. We scanned the PWM for each kinase k against the protein sequence
for each TF j, and recorded the maximum PWM score, denoted as Sjk. We also generated
and scanned scrambled versions of these same protein sequences to create an appropriate
background score distribution for each PWM. For each kinase k, we used the background
distribution of PWM scores to transform all corresponding scores Sjk to p-values, denoted
Pjk. We then convert p-values to prior probabilities, adapting Eq 2.2 above:

sjk = (1− Pjk)`j−Wk+1 (2.3)

In this case, `j is the length of the protein sequence for TF j, and Wk = 7 for all PWMs
generated by Predikin [8]. The distribution of these priors is shown in Figure S3.

Missing Priors: ChIP-chip and Kinase-Substrate Interaction Data

Note that our yeast input data set lacks TF-Gene priors b based on ChIP experiments.
While there is publicly available genome-wide ChIP-chip data for our factors of interest,
these experiments were performed in the absence of any environmental stress [9]. As noted
in our manuscript, MSN2/4 are primarily controlled at the level of nuclear transport, and
in the absence of stress, these factors are not present at high concentrations in the nucleus.
Unsurprisingly, few binding sites were identified for these particular factors by this method.
We attempted to derive prior probabilities b from this data set, but found that they resulted
in an overly sparse network with lower performance (data not shown).

There is also publicly available data for yeast kinase substrates identified in vitro through
the use of protein microarrays [10]. We attempted to use this data set to derive priors a,
but ultimately rejected it for several reasons. For one, quantitative data was not made
public, and so we can only assign a “high” prior (i.e. 0.9) to their predicted kinase-substrate
connections, and a “low” prior (i.e. 0.1) to all other connections. This data set was also
especially sparse for the TFs MSN2 and MSN4, and in particular no kinases were predicted
to phosphorylate MSN2. We also attempted to derive priors from STRING [11], using the
same method as in our human B cell application (see Section 2.3). Again, this resulted in
an overly sparse network with lower performance (data not shown).
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2.3 Human B Cell Application

Human B Cell Expression Compendium

In the human B cell application, we derived the expression matrices g, f ,h from a com-
pendium of T = 336 microarrays available in GEO [12] (accession GSE2350), and previously
published by Basso, et al. [13]. We processed the raw data using RMA [14] in BioConduc-
tor [4], which outputs normalized expression values on the log2-scale. We then filtered out all
probe sets with no expression in any condition (max expression < log2(100)), or insufficient
perturbation across the samples (variance < 0.03). All remaining probe sets were further
normalized across all samples by subtracting the mean expression value and dividing by the
standard deviation of the profile, as performed for the yeast expression data (Eq 2.1).

The expression data contained 4 different probe sets corresponding to STAT1, which
were highly correlated (r2 > 0.9 for all pairs). We calculated the mean of these expression
values within each sample to create a single representative expression profile for STAT1
(f , J = 1). We also identified groups of probe sets that corresponded to the same kinase or
phosphatase gene and combined redundant expression profiles. For each Entrez Gene ID [15]
corresponding to multiple probe sets in h, we repeated the following procedure:

1. Identify all corresponding probe sets (expression profiles)

2. Identify the pair of expression profiles with the largest positive correlation, r2

3. If r2 > 0.5, average the corresponding pair of expression values within each sample,
and replace both profiles with the average expression profile

4. Repeat steps 2 and 3 until the criteria in step 3 is not met, or until a single expression
profile remains.

We combined probe sets for TFs and modifiers in our model because redundant regula-
tors could lead to extraneous network connections, in which the duplicates of the regulator
expression profile cancel each other out in the regression model. However, we still allow
for a modifier to be represented by multiple expression profiles in our model input data if
the probe sets are not strongly correlated across the expression compendium. This process
resulted in K = 510 expression profiles for kinases and phosphatases (h), corresponding to
323 unique Entrez Gene IDs. The remaining N = 8, 973 probe sets that passed the initial
filtering, but did not correspond to STAT1, kinase, or phosphatase genes, were treated as
target genes (g). No clustering was applied to target gene probe sets, regardless of correla-
tion, and redundant target gene profiles have no impact on other model parameters (data not
shown). Thus, the probe sets correspond to only 7, 026 unique Entrez Gene IDs. Combined
expression profiles for STAT1 and relevant modifiers were z-score normalized by the same
method as target genes (Eq 2.1).

STAT1-Target Gene Priors from ChIP-seq

We obtained ChIP-Seq data for STAT1 from GEO [12] (accession GSE12782), previously
published by Rozowsky, et al. [16]. This data includes reads for STAT1 ChIP-seq experiments
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and input DNA controls from IFN-γ-treated HeLa S3 cells. We first filtered this data by
removing all ambiguous, unmapped, and redundant reads, then applied the GLITR algorithm
for peak-calling, as described in [17]. Here, we briefly summarize the GLITR algorithm, with
emphasis on the steps adapted for our application.

GLITR compares the ChIP-seq reads to input DNA reads in two different ways. At each
potentially enriched region, GLITR directly compares the ChIP-seq peak height to random
samples from a substantially larger pool of “background” input reads, in order to compute
the median fold change of each peak. GLITR also defines a set of “Pseudo” reads, which
are also compared to the background reads in the same way as the ChIP-seq reads. These
Pseudo peaks are then compared globally to the GLITR peaks using a nearest neighbor
method based on both absolute peak height and median fold change against background.
This global comparison produces the FDR thresholds ultimately used to select a set of high-
confidence ChIP peaks. ChIP peaks which directly overlap a Pseudo peak at this threshold
are also removed.

As discussed in [17], the Pseudo set can either be a paired control experiment, or can
be sampled out of the background set. The background set itself can come from a paired
control experiment, but only if the control has a much larger sequence depth than the ChIP
sample, which is uncommon. Therefore, Tuteja et al. developed a pool of background reads
from multiple input samples that is appropriate for most cell types [17]. In the case of
the STAT1 data, the paired control resulted in approximately the same number of reads as
the ChIP-seq, and therefore we used the filtered input DNA controls from [16] as “Pseudo”
reads, and all input human DNA reads from [17] as “background”. We randomly removed
a small percentage (< 0.1%) from the remaining ChIP-seq start coordinates, such that both
the ChIP-seq and Pseudo input sets had the same number of unique start coordinates, as
required by the GLITR algorithm. All other GLITR parameters were left at their default
settings.

GLITR outputs a score X ∈ {0, 1, . . . , 100} for each ChIP and Pseudo peak, with 0
corresponding to the most confident peaks. The proportion of Pseudo regions passing a
given threshold X ≤ x is used as an estimate of the false positive rate among the ChIP
regions passing this same threshold, based on the assumption that Pseudo data provides a
suitable model of randomly occurring input peaks. Thus, the FDR at any threshold x is
given by Eq 2.4, originally from [17]:

FDR(x) =
Proportion of Pseudo peaks with X ≤ x

Proportion of ChIP peaks with X ≤ x
(2.4)

For our purposes, we need to map each peak score X to a prior probability, rather
than use an FDR cutoff. To map scores X to prior probabilities pX , we rely on the same
assumption as the FDR calculation, namely that the distribution of scores for the Pseudo
peaks is an estimate of the false positives among the ChIP peaks. Thus, we can derive a
reasonable estimate of the desired probability

px = 1−
(

Proportion of Pseudo peaks with X = x

Proportion of ChIP peaks with X = x

)
(2.5)
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Note that this differs from the FDR estimate in that it uses the proportions of regions
at a precise score, rather than passing a threshold. In practice, the number of regions are
under-sampled for some scores, and therefore the approximation of px is not robust for all
x. To adjust for this problem, we took two basic steps. First, we binned the scores X into
bins of size 5, and computed a smoothed probability for the entire bin. In other words,
p0 = · · · = p4 = pX∈(0,4), and so on. The majority of peaks have X = 100, and so p100 was
computed as a single bin. Second, we assumed that a correct mapping X → pX should be
monotonically decreasing. In other words, if score x1 is better (lower) than another score x2,
then px1 ≥ px2 in all such cases. We enforce the monotonicity by simply iterating through
x from 1..100, and assign px = max(px, px−1). The final mapping from X → pX is shown
in Figure S5. Note that it is desirable that p100 = 0, as these are the majority of the false
positives in the data, and regions with p = 0 can be ignored for subsequent analysis. In this
application, px = 0 ∀x > 64, effectively filtering out most poor-scoring peaks in the data.

The GLITR algorithm does not explicitly compare Pseudo and ChIP peaks that overlap
in the genome. Such cases may be indicative of regions where DNA becomes more accessible
as a result of IFN-γ treatment, but where there is no actual STAT1 binding site. To account
for these regions, we applied the same mapping X → pX , derived for ChIP peaks, to the
scores for all Pseudo peaks. Let pc be the probability of a particular ChIP peak, and let
pu be the probability of some overlapping Pseudo peak. Let pf denote the final probability
assigned to the ChIP region after consideration of overlapping Pseudo regions, calculated
by:

pf = max(0, pc −max pu) (2.6)

In other words, simply subtract the probability of the strongest overlapping Pseudo peak
from the probability of the ChIP peak. This essentially enforces a “penalty” on ChIP peaks
with overlapping Pseudo regions. If the Pseudo peak has probability greater than or equal
to that of the ChIP peak (if pu ≥ pc) then the ChIP peak is removed entirely (pf = 0).

The goal of this analysis is to derive prior probabilities for the regulation of target genes
by STAT1, rather than for binding to genomic regions in general. Therefore, we must also
map individual peaks with pf > 0 to proximal genes in order to derive final values for b.
The most reasonable and straightforward way to perform this mapping is to simply define
a presumed promoter region as a fixed amount of sequence upstream of each gene start
site, then take the maximum pf for all peaks overlapping the presumed promoter. In this
analysis, we defined the presumed promoter as the 1kb region upstream of each gene start
site as defined in RefSeq [18], in order to be consistent with the PWM-based priors (below).
Thus, for each gene i, and j =STAT1, bij = max pf using all peaks overlapping the designated
1kb upstream region. The distribution of these priors is shown in Figure S4.

STAT1-Target Gene Priors from PWMs

STAT1 binds to two distinct motifs, depending on its dimerization partner and the upstream
signal triggering its activity [19]. The IFN-Stimulated Response Element (ISRE) is typically
bound by STAT1 in response to Type I IFNs (i.e. IFN-α/β), while the IFN-γ-Activated Site
(GAS) is typically bound by STAT1 in response to the Type II IFN (IFN-γ). We used a
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PWM from TRANSFAC [20] to represent the ISRE motif (accession M00258), and derived
a PWM for GAS sites using 19 exemplary sequences compiled by Robertson, et al. [21]
(Figure S6). These two PWMs were used in conjunction to derive the TF-Gene prior matrix
m in the human B cell application.

We then scanned the same promoter regions used for the ChIP-seq analysis (1kb up-
stream) with both PWMs. For the background model to determine p-values, we used the
1kb upstream regions for all annotated human RefSeq genes [18], including those which could
not be mapped to a transcript in our expression data. For each promoter i, we used the
most significant p-value for either PWM, denoted Pij. We then used an adjusted version of
Eq 2.2 that accounts for the use of multiple PWMs to convert p-values to prior probabilities:

mij = (1− Pij)2[2`−(WI+WG−2)] (2.7)

Here, ` = 1000 is the length of the promoter sequence, WI is the width of the ISRE PWM,
and WG is the width of the GAS PWM. The exponent computed in Eq 2.7 is the number of
tests done against both PWMs for a single promoter (both strands of sequence are scanned).
The distribution of these priors is shown in Figure S4.

Modifier-STAT1 Priors from STRING

We derived the matrix s using selected channels of interest from the STRING database [22].
We downloaded the detailed protein links (including individual channel scores) for STRING
v8.2 on 10/23/09. We then mapped STAT1 and all modifiers in the expression matrix h
to their corresponding STRING identifier via Entrez Gene Symbol [15], and extracted all
protein links between STAT1 and any input modifiers. We recomputed the score S for
each link using only the channel scores marked “experimental” (denoted here as Se) and
“database” (denoted here as Sd) using the Bayesian integration equation from [11]:

S = 1− ((1− Se) (1− Sd)) (2.8)

Thus, each prior probability sjk corresponds to the recomputed score S for the link between
j = STAT1 and modifier k. All missing links were presumed to have sjk = 0 (therefore
transformed to 0.05 by our restricted prior range described above). The distribution of these
priors is shown in Figure S4.

3 Analysis of Simulated Data

We analyzed simulated input data (Sec 2.1) in order to estimate the accuracy of our model-
fitting method (Sec 1.4). For our first analysis, we ran our algorithm 10 times using as
input the simulated expression matrices gσ2=0, f , h, b, m, a, s, and seeded the algorithm
by randomly selecting each network edge according to the geometric mean of its priors.
This initialization procedure is fairly stochastic, representing wide coverage of the possible
solution space, and is suitable for smaller networks. We then averaged together the model
estimates from all 10 runs.
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We then plotted a receiver operating characteristic (ROC) curve for the posterior prob-
abilities C and D (Figure S1A,B). For comparison we also show ROC curves for each indi-
vidual type of prior probability, and for TF-Gene expression correlations. The performance
observed on the ROC curves can be quantified by computing the area under the curve (AUC)
metric. We found that MONSTER perfectly recovered the TF-Gene edges (AUC = 1, solid
blue line in Figure S1A). We evaluated the relative advantage of the full model, as compared
with using either the priors b or m alone, or expression correlations between TFs and target
genes, to predict the TF-Gene edges. We found that all alternatives fell short of using the
full model, resulting in AUC values less than 0.75 (dotted and dashed blue lines in Fig-
ure S1). TF-Modifier edges were substantially harder to infer, owing to their indirect effect
in the expression model (AUC = 0.78, solid green line in Figure S1B). However, MONSTER
predicted these edges with better accuracy than either simulated prior type alone. These
results demonstrate that the observed performance of MONSTER cannot be reproduced by
simpler analyses of the individual data sources.

In subsequent trials, we increased various sources of noise in the simulated expression
data (note that the priors are also noisy, but we did not vary this noise). For each analysis,
we ran our algorithm 30 times, using the same stochastic initialization procedure as the
previous analysis, and averaged the model estimates within groups of 10 runs, in order to
also assess the variability of algorithm performance. For each group of 10 runs, we computed
an average estimate of C and D, recomputed the ROC as in the first analysis, and computed
the AUC. This resulted in 3 AUC values for each analysis (1 for each group of 10 runs), and
we plotted these values as “I-bars” spanning the min and max AUC values, and a line drawn
through the median AUC value for each analysis.

We performed this series of analyses by first gradually increasing the model-wide variance
σ2 from 0 to 1 (using matrices gσ2=0 thru gσ2=1 from Sec 2.1). Figure S1C shows that
algorithm performance is unaffected by noise in the individual expression values, up to a
degree of noise equivalent to the expression variance for each regulator (TF or modifier).
Note that this limit is essentially guaranteed by the z-score transformation that we applied
to real expression data.

For subsequent analyses, we kept the highest value of σ2 used in the previous series, and
added either additional gene profiles, or additional expression conditions, neither of which
contain any information relevant to the underlying network. The motivation for this analysis
is that real input data might contain (i) target genes that are not targeted by any of the
TFs of interest, and (ii) expression samples in which the underlying network is disrupted due
to non-model elements, i.e. samples from a different cell-type. As described in Sec 2.1, we
added either N ′ uninformative genes, or T ′ uninformative conditions, with values ranging
from 0 to N0 or T0 respectively. Figure S1D shows the results for increasing numbers of
uninformative genes, represented as the percentage (N ′/N0) × 100. Again, performance
is essentially constant. Similarly, Figure S1E shows the results for increasing numbers of
uninformative samples. In this case, the inference of TF-Modifier connections were negatively
affected by this type of noise, but still out-performed individual prior sources.

Overall, we conclude from these results that our model-estimation method can operate
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accurately in the presence of noise in both the expression and prior data, and is robust to
the inclusion of uninformative gene profiles and expression samples.

4 Analysis of Yeast MSN2/4 Network

The yeast input data set (g, f ,h,m, s) was prepared as described in Sec 2.2. We applied our
method by running the model-fitting method 100 times on the complete data set to assess
overall algorithm performance, and another 100 times using only g, f , and m (TFs only,
no kinases) to specifically assess the contribution of TF-Modifier synergy terms to target
gene expression prediction. In each run, we seeded the algorithm using the same stochastic
method as for the simulated data analysis (note that the network sizes in both applications
are comparable). We used a substantially larger number of runs here than for the simulated
data because: (1) we were performing fewer individual analyses, and could dedicate more
run time to each set of input data; (2) we observed a clear increase in accuracy (AUC) using
a larger number of runs in this case (data not shown).

We performed hierarchical clustering on the 100 individual network models estimated
as described in Sec 1.5, for both the full model, and the TF-only model (Figure S7). In
both cases, the major clusters are not well-separated (most of the tree height is within these
clusters). This meets our criteria for a single solution mode, although there is clearly some
variability between individual model estimates.

We computed the accuracy of each model based on the known targets and modulating
kinases for MSN2/4, as described in the main manuscript. In order to assess the significance
of the ROC curves in Figure 3 (main text), we performed two additional types of analysis:
permutation tests and bootstrapping.

Permutation tests [23] were performed for each individual ROC curve, to determine the
significance of the computed AUC values. In this test, a set of edge discriminants, i.e. the
posterior estimates C, are randomly permuted relative to the known true/false labels on
these same edges. The AUC value is recomputed for each permutation, and the p-value
is the proportion of permutations in which the AUC value was higher than the originally
observed AUC value. We performed 100,000 permutations for the AUC values corresponding
to the following discriminants: full model posteriors C(+), TF-only model posteriors C(−),
PWM-based priors m, magnitude of expression correlation between g and f , and global
mutual information (MI) estimated by MINDY [24]. The resulting p-values are summarized
in Table S4 (3rd column). All AUC values were significant according to this test, indicating
that each discriminant performs significantly better than random selection of edges. In other
words, none of the AUC values in Table S4 are expected to occur by chance.

We also wanted to examine whether the apparent improvement in AUC observed for our
full model posteriors C(+) was truly significant, or might be expected to occur by chance. To
test this, we performed a bootstrap analysis [23] as follows. For each of 100,000 bootstrap
samples, we randomly sampled 160 TF-Gene edges from our actual network with replacement
and with all assigned posteriors, priors, etc. Thus, for each individual bootstrap sample,
some edges may be ignored, and other edges may count multiple times, although the overall
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sample size remains constant. If the observed improvement in AUC is based on a small
percentage of the overall network, then this apparent improvement should disappear in many
of the bootstrap samples. Thus, the p-value based on bootstrap analysis is the proportion
of bootstrap samples in which the AUC for the full model, C(+), is no longer greater than
another comparative AUC value (i.e. C(−), the posteriors from the TF-only model). These p-
values are reported for each of the AUC values as compared to the full model AUC (Table S4,
4th column). For each bootstrap sample, we also computed the exact different in AUC values
between C(+) and each other discriminant, and summarized these values as a 95% confidence
interval (Table S4, 5th column). All bootstrap p-values were significant, and all differences in
AUC had positive confidence intervals, indicating that the apparent improvement in accuracy
observed in our full model vs. all other tested discriminants is unlikely to occur by chance.
Most notably, this result indicates that the inclusion of kinases in the model fitting procedure
resulted in a significant improvement to the overall accuracy of MSN2/4 target selection, as
compared to the “TF-only” model (bootstrap p-value = 0.0018). Overall, the inclusion of
modifiers in MONSTER improves our ability to model MSN2/4 regulation of target genes,
and enables the prediction of upstream components for the transcriptional program.

We also performed 5-fold cross-validation in order to assess the possibility of over-fitting
our model to the available data. We randomly divided the 314 conditions into 5 equal sized
partitions, and repeated our entire model-fitting procedure for both the full and TF-only
models with each partition held out (training the model on 80% of the available data).
We then assessed the degree to which the network model could predict the observed gene
expression values in the held out data by computing the mean square of all residual error
values εit (MSRE) in the held out conditions t, and also computed this value for the training
data for comparison. The mean and standard deviation of the MSRE on both the test
and training data for both models are shown in Figure S8. Although the primary goal of
our model is not the prediction of gene expression patterns, but rather the inference of the
underlying network, these results show that our full model performs equally well on both the
test and training data. Therefore, our full model does not show any indication of over-fitting
despite the larger number of parameters relative to the TF-only model.

5 Analysis of the STAT1 Network in Human B Cells

The human B cell data we prepared in Sec 2.3 is approximately 30-fold larger than the
yeast network, and therefore each run of the model-fitting algorithm requires substantially
more computing time. Specifically, the average computing times for a single run of our
model-fitting algorithm in the yeast and STAT1 applications were 129s and 6,656s, respec-
tively (roughly 50-fold increase in run-time). Rather than seed the algorithm with a highly
stochastic network, as we did in the yeast application, we opted to use a smaller number
of runs seeded with initial models closer to the network predicted by the priors. We began
by seeding our model-fitting method with a fixed network containing only those edges with
high prior probabilities. We ran the method 3 times with a fixed start, in order to capture
the small variation arising in the estimation phase. We then added a moderate amount of
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perturbation to the starting model, in order to explore a larger portion of the solution space.
We perturbed the network structure by adding/removing edges at random. Alternatively,
we perturbed the starting values of numerical parameters by adding noise sampled from a
normal distribution. Thus, we ran the model-estimation heuristic multiple times, seeded as
follows:

• Non-Stochastic (NS): All network edges initalized by: Cij = 1 iff
√
bijmij ≥ 0.75 and

Djk = 1 iff ajk ≥ 0.75, all other parameters fit by OLS (3 runs)

• Perturbed Network (PN): All network edges initalized as in NS, then 1% of edges
switched at random, all other parameters fit by OLS (10 runs)

• Perturbed Parameters (PP): All network edges initalized as in NS, all other parameters
fit by OLS, then added random noise sampled from N(0, 0.05) (10 runs)

The hierarchical clustering dendrogram for the 23 model estimation runs is shown in
Figure S9. Note that there are much longer branches at the top of the hierarchy, indicating
well-separated clusters. Runs are labeled by the type of seeding method described above,
and the three major clusters are outlined in green, purple, and blue and numbered I–III.
We averaged model estimates together within each of these clusters to produce three dis-
tinct network models. Further perturbations to the initialization phase did not identify any
additional solution modes (data not shown).

As an overall comparison of the three network models, we first looked at basic model
properties, summarized in Table S9. The term β1 is the influence parameter for STAT1,
and describes the influence of STAT1, in general (independent of modifiers), and whether
it is an activator or repressor. The term w1 is the prior weight parameter for STAT1, and
describes whether the inferred network is more dependent on the ChIP-based priors b, or
PWM-based priors m. The number of targets is given in terms of probe sets, and is based
on the threshold P (Cij = 1) ≥ 0.9. There is little overlap in the target genes predicted by
each model. Models I and III share only 5 predicted targets, and clusters II and III share 95
predicted targets. Clusters I and II do not share any predicted targets. This supports the
notion that all three clusters of model estimates are well-separated.

Cluster I produces the most reliable model for several reasons. Most notably, the pre-
dicted targets in this model are significantly enriched for known direct targets of STAT1,
previously compiled by Roberston et al. [21]. 23 of these known targets mapped to 39 probe
sets in matrix g and of these, 25 (64%) were predicted by MONSTER (hypergeometric test
p-value = 2.6x10−9). The 23 known direct target genes are listed in Table S5 with the
corresponding HGU95A probe set IDs present in the human B cell expression compendium.

Model I is also the only model with β1 > 0, which is in agreement with the established
role of STAT1 as an activator of transcription [25, 26]. This model has w1 closest to 0.5,
which indicates balanced use of the ChIP and PWM-based TF-Gene priors. By comparison,
model II is biased somewhat towards the ChIP-based priors, which are limited to a singular
cellular condition. Model III is heavily biased towards the PWM-based priors, which are
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likely to have lower specificity in general compared to the ChIP-based priors. Model III also
predicts that STAT1 has very weak influence on the predicted target genes (β1 ≈ 0).

To further compare these network models, we plotted histograms of the TF-Gene priors,
expression correlations to STAT1, and expression entropy [27] for the target genes predicted
by each network (Figure S10). These distributions further support the selection of model I
as the most interesting and reliable solution mode. Despite the fact that model II (purple
bars) is more heavily weighted to use ChIP-seq priors b, and is generally more enriched for
target genes with higher bij priors, model I (green bars) is actually the most enriched for
the group of target genes with the highest bij scores (Figure S10A). This is also true for the
PWM priors m (Figure S10B). In other words, model I is the most enriched for target genes
with the strongest prior scores based on both ChIP-seq and PWM. Model I is also enriched
for genes with the strongest correlation to STAT1 expression (Figure S10C).

Entropy [27] measures the overall broadness or lack of condition-specificity for each tar-
get gene. Lower entropy indicates that a gene is specifically expressed in a smaller set of
expression samples in our compendium. Gene expression profiles with low entropy are the
most likely to represent active regulatory patterns rather than random noise. Model III
(blue bars), which also contains the largest number of predicted targets, and the weakest
STAT1 regulatory influence (Table S9), is heavily biased towards target genes which appear
to be the most random in their expression patterns (Figure S10D). Model I is highly enriched
for genes with lower entropy, and therefore represents the strongest regulatory signal in the
input data.

Based on the model comparisons described above, we chose model I as our “primary”
model, i.e. the model most likely to capture the direct regulatory effects of STAT1. This
model is discussed in detail in the main manuscript, and further details are described in
the next subsection. The following subsections apply similar analysis procedures to the
alternate networks and discuss the possible biological implications of these network models.
For all models, we used the thresholds P (Cij = 1) ≥ 0.9 to predict high-confidence STAT1
target genes, and P (Djk = 1) ≥ 0.9, γjk ≥ 0.05 to predict high-confidence STAT1 modifying
enzymes.

5.1 Primary STAT1-Mediated Network Model

The primary model predicts 1,803 probe sets mapping to 1,559 unique genes as STAT1 tar-
gets. The details of these putative target genes are discussed in the main manuscript. The
primary model also predicts 23 probe sets with apparent STAT1-Modifier effects. These
probe sets mapped to 21 unique modifiers, 20 of which were kinases, and 1 of which was
a phosphatase. Most of these modifiers are supported by literature evidence for some
role in STAT1 regulation (Table S6). All predicted modifiers have high priors based on
STRING [22], but not all modifiers with high STRING-based priors were predicted by our
method. Therefore our method specifically predicts modifiers likely to affect STAT1 tran-
scriptional activity in B cells and related cancers, given some prior knowledge of general
protein-protein interaction with STAT1.

To further assess the functional implications of the modifier list predicted by MONSTER
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as compared to other interacting partners predicted by STRING, we compared our list of
21 MONSTER-predicted modifiers to the remaining 17 modifiers (kinases and phosphatases
only) predicted by STRING but not our model. These lists are too short for a robust sta-
tistical analysis, but we observed obvious trends in the functional enrichment of our list as
compared to the STRING-only list. For each list, we extracted all KEGG [28] and GO [7]
annotations for each modifier using the GO.db, KEGG.db and org.Hs.eg.db packages in Bio-
conductor [4]. For each term X associated with at least one MONSTER-predicted modifier,
we computed the odds ratio of enrichment against the STRING-only list of modifiers, as
follows:

Odds Ratio (X) =
% of MONSTER-predicted modifiers w/ annotation X

% of STRING-only modifiers w/ annotation X
(5.1)

We attempted to assign p-values to these odds ratios using Fisher’s Exact Test, but
even strong odds ratio did not appear to be significant due to the aforementioned small
sample size, and the general sparsity of pathway annotations. We instead chose to select the
annotations with the strongest overall enrichment (Table S8). For GO Biological Process
(BP) annotations at least 3 links away from the ontology root, we selected annotations
associated with at least 5 of the 21 MONSTER-predicted modifiers, and odds ratio > 2.
For KEGG Pathway annotations, which are sparser than GO BP annotations, we selected
terms with at least 3 of 21 MONSTER-predicted modifiers, and once again an odds ratio
> 2. It is striking that many of the annotations in Table S8 recapitulate known pathways
for STAT1, such as “apoptosis”, and related terms also enriched among the predicted target
genes (Table 3, main manuscript). The list also includes annotations relevant to B cells and
related cancers, such as “hemopoiesis” and “hemopoietic or lymphoid organ development”.

We also analyzed the available expression data using the MINDY algorithm [24]. We
first ranked the target gene probe sets i by global MI(i, STAT1) estimated by MINDY,
and selected the top 1,803 probe sets (the same number of target genes predicted by the
MONSTER primary network). We then computed, for each kinase k: max |∆MI(i, STAT1)|
among the top 1,803 target gene probe sets i. We then selected the top 23 modifiers (again,
chosen to match the number predicted by MONSTER) based on this summary statistic, and
tabulated the results along with supporting literature in Table S7.

Additionally, we analyzed the known functional associations between STAT1 target
genes and modifiers predicted by this network model. We extracted from the STRING
database [22] functional association scores for all pairs (i, k) in our human B cell input
data (1 ≤ i ≤ N , 1 ≤ k ≤ K). We recomputed the association scores by excluding the
“expression correlation” channel to avoid any commonality with our input data that
might bias the results. Note that these association scores were not used to compute the
STAT1-Modifier priors a, and therefore are independent of the input data used by MONSTER.
We separated these association scores into those within this network - for which both i was a
predicted target of STAT1 and k was a predicted modifier of STAT1 - and those not in this
network (all remaining associations). We first analyzed the density of associations in each
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category, based on the number of associations contained in STRING vs. the number of pos-
sible pairs (i, k). We found that the density of defined associations within our network was
approximately 4.5-fold greater within our network (0.0219 vs. 0.0049), and this difference is
highly significant according to a Fisher exact test (p-value < 2.2E-16). We also compared
the distribution of the defined STRING scores, independent of density, and found that in
general the association scores defined for (i, k) pairs within this network were higher than
those outside the network (Figure S2, Mann-Whitney p-value < 2.2E-16). Therefore, we con-
clude that this network predicts STAT1 target genes and modifiers which are functionally
coherent.

5.2 Alternate STAT1-Mediated Network Model II

The average network model corresponding to cluster II in Figure S9 linked STAT1 to the
negative regulation of 2,031 target gene probe sets corresponding to 1,735 unique genes.
This set of genes is heavily enriched for annotations related to metabolic and biosynthentic
processes, as shown in Table S10. However, this set of genes contains none of the direct
STAT1 targets compiled by Robertson et al. [21]. This model also suggests a repressive role
for STAT1 (β1 = −0.29), although STAT1 is primarily characterized as an activator in the
literature [25, 19]. Therefore we argue that this network model is probably dominated by
downstream effects. However, it does suggest that in general STAT1 activity is negatively
correlated with cell growth and proliferation in the analyzed expression data. Negative
regulation of these functions is a known downstream effect of STAT1 activity in many cell
and tumor types [29]. As with all of our network models, we cannot completely rule out
indirect or parallel effects, both in terms of the target genes and STAT1 modifiers.

5.3 Alternate STAT1-Mediated Network Model III

We hypothesize that the PWM-biased network model is most likely artifactual or represen-
tative of broad cellular trends, rather than STAT1-specific regulation. The value of the β1

parameter in this model suggests that STAT1 has little direct influence on the predicted
target genes, although this could simply mean that STAT1 is completely dependent on up-
stream modifiers for the regulation of target genes in this network model. The value of β1 is
also within the range of values observed when the input expression data is randomly shuffled,
making it difficult to assess the significance of this model. Furthermore, the list of predicted
target genes is heavily biased towards high-entropy genes which are unlikely to carry signif-
icant biological regulatory signal in our expression set (Figure S9D). This target gene list is
also enriched primarily for functional annotations related to the nervous system rather than
the immune system, although these functional annotations are still highly significant and
would not be predicted using the PWM scores alone (Table S11).

We offer several alternate hypotheses for this model. One possibility is that the network
reflects indirect regulatory connections between the modifiers and target genes, but mediated
by TFs other than STAT1. This may occur in our procedure because other mediating TFs
were left out due to lack of sufficient data. Another possibility is that this model does
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represent a STAT1-mediated network, albeit one that is not primarily active in B cells. This
model is biased towards the PWM-based priors, and therefore is more likely to identify
STAT1 binding sites across all cell types and signaling pathways. A role for STAT1 in
regulating gene expression in neurons has been experimentally demonstrated [30, 31]. In this
case, the network model parameters may be indicative that STAT1 is being decoupled from
the regulation of these target genes by the upstream modifiers in the expression compendium
we modeled. Ultimately, we cannot differentiate among these possibilities using existing data.
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Supporting Figures

Figure S1: Accuracy of MONSTER using simulated data. Accuracy is measured
separately for posterior probabilities of TF-Gene connectivity (solid blue lines) and TF-
Modifier connectivity (solid green lines), by the area under the ROC curve (AUC) for each
network model. The accuracy of network priors (dotted blue and green lines) and TF-Gene
expression correlation (dashed blue lines) are shown for comparison. A. ROC curves for
TF-Gene edges with no expression noise. B. ROC curves for TF-Modifier edges with no
expression noise. C. Accuracy (AUC) for increasing model-wide variance of gene expression
residual errors. D. Accuracy (AUC) for increasing percentage of uninformative genes as
compared to the number of informative genes. E. Accuracy (AUC) for increasing percentage
of uninformative expression samples as compared to the number of informative samples.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

A

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Model−wide noise variance

A
U

C −−−
−−

−−−−−−−−−−
−−

−−−−−−−−−−
−−−−−−−−

−
−
−

−
−−

−

C

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

B

0 50 100 150 200

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Uninformative Genes

A
U

C

−
− −− −− −− −− −− −− −

− −− −− −−

D

0 20 40 60 80 100

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Uninformative Expr. Samples

A
U

C

−
−

−− −− −− −− −− −− −− −− −− −−

E

TF−Gene Posterior (C)
TF−Gene Priors (b,m)
TF−Gene Expr Cor
TF−Mod Posterior (D)
TF−Mod Priors (a,s)

28



Figure S2: Modifier-Gene Functional Associations in Primary Model. STRING
functional associations between predicted STAT1 modifiers and target genes within primary
network model, compared to functional associations outside the primary network.
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Figure S3: Yeast Model Priors. Histograms of network priors used for the yeast appli-
cation, corresponding to model matrices m (left) and s (right).
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Figure S4: STAT1 Model Priors. Histograms of network priors used for the STAT1
application, corresponding to model matrices b (left), m (center), and s (right).

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
20

00
30

00
40

00

STAT1−Gene ChIP−seq Priors

Prior

# 
of

 G
en

es

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0
60

0
80

0

STAT1−Gene PWM Priors

Prior

# 
of

 G
en

es

0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0

STAT1−Modifier STRING Priors

Prior

# 
of

 M
od

ifi
er

s

30



Figure S5: Mapping STAT1 ChIP-seq Peak Scores to Probabilities. Mapping was
based on output from GLITR algorithm [17], with X = 0 corresponding to the highest
confidence peaks.
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Figure S6: PWMs for STAT1-Gene priors. The upper PWM corresponds to the
IFN-Stimulated Response Element (ISRE) and the lower PWM corresponds to the IFN-γ-
Activated Site (GAS). Both PWMs are represented using WebLogo [32]
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Figure S7: Hierarchical Clustering of Yeast Models. Individual network estimates
from 100 runs of the model-fitting algorithm were analyzed by hierarchical clustering for: (A)
the full model and (B) the TF-only model. In both model sets, there are no well-separated
clusters to indicate distinct solution modes.
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Figure S8: 5-Fold Cross-Validation of Yeast Models. MSRE values were computed
for the full model (green) and the TF-only model (blue) from each of 5 partitions of the
expression conditions into 80% training and 20% testing conditions. Mean MSRE on both
the test and training data is shown for each cross-validation procedure, with error bars
indicated the standard deviation.
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Figure S9: Hierarchical Clustering of STAT1 Models. Individual network estimates
from 23 runs of the model-fitting algorithm were analyzed by hierarchical clustering. Distinct
solution modes are outlined in green, purple, and blue, and numbered I–III, respectively.
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Figure S10: Distributions of STAT1 Network Properties. Distributions are shown
for: (A) ChIP-seq-based priors, (B) PWM-based priors, (C) STAT1-Target Gene expression
correlation, (D) Entropy of target genes. White bars represent background distribution for
all target genes used as input. Green, purple, and blue bars represent STAT1 target genes
predicted by network solution modes I–III, respectively.

0.05 0.25 0.45 0.65 0.85
ChIP−Seq Prior

%
 o

f S
T

A
T

1−
G

en
e 

E
dg

es
0

10
20

30
40

50
60

A

0.05 0.25 0.45 0.65 0.85
PWM Prior

%
 o

f S
T

A
T

1−
G

en
e 

E
dg

es
0

5
10

15
20

B

0.05 0.25 0.45 0.65 0.85
STAT1−Gene Expression Correlation

%
 o

f S
T

A
T

1−
G

en
e 

E
dg

es
0

5
10

15
20

25
30

C

< 6 7 7.5 8 8.1 8.3
Target Gene Entropy

%
 o

f T
ar

ge
t G

en
es

0
20

40
60

80

D

36



Supporting Tables

Table S1: Input Data Symbols. Summary of symbols representing components of input
data for model-fitting method.

Symbol Description
N Number of target genes in input data, also refers to the normal distribution

in some sampling equations
J Number of TFs in input data
K Number of modifiers in input data
T Number of expression samples in input data
i Index over target genes in input data, range (1, N)
j Index over TFs in input data, range (1, J)
k Index over modifiers in input data, range (1, K)
t Index over samples in input data, range (1, T )
g Matrix of target gene expression values for all genes i and all samples t, size

N × T
f Matrix of TF expression values for all TFs j and all samples t, size J × T
h Matrix of modifier expression values for all modifiers k and samples t, size

K × T
b TF-Gene prior matrix based on experimental binding data for all genes i and

TFs j, size N × J
m TF-Gene prior matrix based on promoter motif analysis for all genes i and

TFs j, size N × J
a TF-Modifier prior matrix based on protein-protein interaction data for all

modifiers k and TFs j, size J ×K
s TF-Modifier prior matrix based on substrate profile analysis for all modifiers

k and TFs j, size J ×K
Ξ The set of all input data matrices, (g, f ,h,b,m, a, s)
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Table S2: Model Parameter Symbols. Summary of symbols representing free parame-
ters in network model.

Symbol Description
α Vector of basal expression values for target genes, length N
β Vector of TF influence parameters, describing linear effect of TF on all target

genes, length J
γ Matrix of TF-Modifier synergy parameters, describing the sign and magnitude

of TF-Modifier synergy terms, size J ×K
C Matrix of indicator variables describing TF-Gene network connectivity, size

N × J
D Matrix of indicator variables describing TF-Modifier network connectivity, size

J ×K
Φ General synergy function mapping expression values (fjt, hkt) to synergistic

effect of interaction between TF j and modifier k
εit Residual error for observed expression of gene i in sample t
σ2 Model-wide variance of residual errors
w Vector of weight variables to apply to b and m for each TF, length J , values

in range (0, 1)
u Vector of weight variables to apply to a and s for each modifier, length K,

values in range (0, 1)
τα Hyperparameter describing the standard deviation of normal prior for all mem-

bers of α
τβ Hyperparameter describing the standard deviation of normal prior for all mem-

bers of β
τγ Hyperparameter describing the standard deviation of normal prior for all mem-

bers of γ
Θ The set of all non-edge model parameters, (α,β,γ, σ2,w,u)
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Table S3: Yeast application kinase & target genes. All target genes and kinases used
as input for yeast application, listed by official gene symbol.

Known MSN2/4 Target Genes
APJ1 CPR1 CTT1 CYC7 DDR48 ECM4 GAC1
GLK1 GPH1 GRE2 GRX2 GSY2 HSP104 HSP12
HSP26 HSP42 HSP78 HXK1 LAP4 MDJ1 NTH1
PIL1 PNC1 PRX1 PTP2 RAS2 SPS100 SSA4
TPS1 TPS2 TPS3 TRX2 TSA2 TSL1 YDL124W
YGL036W YML131W YMR090W YMR315W YNL134C

Decoy Target Genes
AAT2 ASK1 CAR1 CCT4 CTF3 CUE1 EDC2
EMI5 FMP52 HXT5 ILV1 IML2 KAR4 LAG1
LEA1 LYS9 MEF1 MPP10 NAT1 NIP100 PIB1
PTM1 PUS7 RCR2 RIM4 RIX7 RPN1 RPS14B
RPS29B RPS4A RPS6B RPT3 SMY2 THI20 TRM10
VPS41 VPS62 VRG4 YLF2 YLH47

Kinase Genes
AKL1 ARK1 ATG1 BCK1 CDC15 CDC28 CDC5
CKA1 CLA4 CMK1 CMK2 CTK1 DBF2 DUN1
ELM1 FMP48 FRK1 FUS3 GIN4 HAL5 HRK1
HRR25 HSL1 IKS1 IME2 IPL1 IRE1 KCC4
KIN1 KIN2 KIN28 KIN3 KIN4 KIN82 KNS1
KSP1 KSS1 MCK1 MEK1 MKK1 MPS1 NNK1
PBS2 PHO85 PKH2 PKH3 PKP2 PRK1 PRR1
PSK1 PTK2 RAD53 RCK1 RCK2 RIM11 RIM15
SAK1 SAT4 SKM1 SKS1 SKY1 SLT2 SNF1
SPS1 SSK22 SSN3 STE11 STE20 SWE1 TDA1
TOS3 TPK1 TPK2 TPK3 VHS1 YAK1 YCK1
YCK2 YCK3 YGK3 YPL150W
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Table S4: Significance of Yeast Application AUC Values. AUC values were computed
using TF-Gene edge scores from MONSTER full model C(+), MONSTER TF-only model
C(−), PWM-based priors m, absolute expression correlation |cor(g, f)|, and MINDY mutual
information analysis. Corresponding ROC curves are drawn in Figure 2 (main manuscript).
Permutation p-values estimate the probability that the AUC value arose by chance from a
score with no true discriminatory power. Bootstrap p-values estimate the probability that
each AUC value is less than the AUC for C(+) by chance. All p-values are based on 100,000
permutation/bootstrap samples.

Bootstrap: < C(+)

Discriminant AUC Permutation P-value 95% Conf. Int.

C(+) 0.87 < 10−5 - -

C(−) 0.82 < 10−5 0.0018 (0.015, 0.095)
m 0.73 < 10−5 0.00458 (0.035, 0.25)

|cor(g, f)| 0.63 0.00229 < 10−5 (0.16, 0.33)
MINDY 0.6 0.01672 < 10−5 (0.18, 0.37)
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Table S5: Known STAT1 Target Genes. Gene symbols for verified direct STAT1 targets
compiled by Robertson et al. [21], with matching probe sets in the human B cell expression
compendium. Genes FCGR1A, FCGR1B, and FCGR1C are all individual known STAT1
targets, but the available expression data contained only a single probe set corresponding
to all three of these genes (due to sequence homology), and therefore we count this as a
single known gene.

√
indicates STAT1 target is correctly predicted by MONSTER primary

model.

Gene Symbol Probe Set

ISG15
1107 s at

√

38432 at

IFI6

1358 s at
√

33832 at
34105 f at
37864 s at

√

GBP1 35735 at
√

FCGR1A/B/C 37220 at
√

CXCL10 431 at
√

IL6ST
35842 at

√

37621 at
√

IRF1 669 s at
√

INDO 36804 at
√

IFIT2
908 at

√

909 g at
√

IFIT1
32814 at

√

915 at
√

IFITM1 675 at
√

IFITM3 41745 at
√

Gene Symbol Probe Set

OAS1
38388 at

√

38389 at
√

FOS
1915 s at

√

1916 s at
√

2094 s at
SERPINA3 33825 at

ISG20 33304 at

CIITA
35616 at
41511 at

√

MVP 38064 at
√

NOS2A
1418 at

1419 g at
1948 f at

CCL2
34375 at

√

874 at
875 g at

√

ICAM1 32640 at

CD40
35149 at
35150 at

MX1 37014 at
√
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Table S6: Modifiers Predicted by Primary Network Model. Listed by gene symbol,
with γjk value and summary of known role in STAT1 regulation. γjk values marked * indicate
a probe set annotated for the same modifier, which corresponds to an incomplete transcript.

Modifier γ Value Summary of Supporting Literature
JAK1 0.29 Activator of STAT1 in both IFN-γ and IFN-α/β signaling [33, 19].
LCK 0.16, -0.05* STAT1 activation during HSV infection of T-Cells is LCK-dependent [34].

RIPK1 -0.15 Competes with STAT1 for binding at TNF-α receptor [35], no known
effect on STAT1 TF activity.

SYK -0.15 STAT1 activation in response to IFN-α is SYK-dependent [36].
BMX 0.12 BMX activates STAT1 to promote target genes, including apoptotic

genes [37, 38, 39].
RPS6KA5 -0.10 Promotes STAT1 S727 phosphorylation in response to UVA in vivo and

phosphorylates this residue directly in vitro [40].
CSNK2B -0.09 No direct evidence for influence on STAT1.

JAK3 -0.09 Mediates JAK/STAT signaling in response to IL-2-family cytokines [41].
Specific activation of STAT1 demonstrated in macrophages [42].

TYK2 0.08 Activator of STAT1 in IFN-α/β signaling [33, 19].
MAPK14 0.08 Required for STAT1 S727 phosphorylation in IFN signaling [43]. Phos-

phorylates STAT1 S727 directly in response to UV stress [44].
AKT1 0.08 Mediates STAT1 S727 phosphorylation in IFN-γ signaling [45].

EIF2AK2 -0.08 Inhibits STAT1 transcriptional activity [46].
CAMK2G 0.07 Phosphorylates STAT1 S727, promotes TF activity [47, 48, 49].

PRKCD -0.07 Phosphorylates STAT1 S727, promotes TF activity [50, 51, 52, 53].
KIT 0.07 Phosphorylates STAT1 in vitro, activates and physically interacts with

STAT1 in vivo [54, 55].
DUSP3 -0.06, 0.12* Viral homolog VH1 inhibits STAT1 activity [56], interaction between en-

dogenous DUSP3 and STAT1 has not been studied.
ERBB2 0.06 Interacts with STAT1 in vitro [57]. Overexpression in bladder cancer

blocks IFN-γ-induced STAT1 activation [58].
FYN 0.06 Required for STAT1 phosphorylation in Angiotensin II-treated vascular

smooth muscle cells [59]. Required for STAT1 phosphorylation and DNA
binding in EGF-treated JB6 cells [60].

PDGFRA 0.06 Activates STAT1 in response to platelet-derived growth factor [61].
FGFR3 -0.05 Can either activate [62] or inhibit [63] STAT1 TF activity, depending on

context. Known to be mutated with differential effect on STAT1 activity
in some multiple myeloma cell lines [64].

JAK2 0.05 Activator of STAT1 in IFN-γ signaling [33, 19].
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Table S7: STAT1 Modifiers Predicted by MINDY. Listed by gene symbol, with γjk
value and summary of known role in STAT1 regulation.

Modifier max|∆MI| Summary of Supporting Literature
MAP4K1 0.4727 No direct evidence for influence on STAT1.

MAP3K10 0.4597 No direct evidence for influence on STAT1.
CSF2RB 0.4584 Responds to specific cytokines and activates STAT1 in conjunction with

JAK2 [65].
TYRO3 0.4573 Indirectly activates STAT1 via the IFN-α receptor in response to GAS6

ligand [66].
FYN 0.4567 Required for STAT1 phosphorylation in Angiotensin II-treated vascular

smooth muscle cells [59]. Required for STAT1 phosphorylation and DNA
binding in EGF-treated JB6 cells [60].

PPP2CB 0.4518 PP2A-dependence was shown for STAT1 nuclear localization and STAT1
target gene expresssion [67]. PP2A also regulates PRMT1, which in turn
regulates STAT1 via methylation [68].

PRKY 0.4469 No direct evidence for influence on STAT1.
PPM1F 0.4383 No direct evidence for influence on STAT1.

SNF1LK 0.4377 No direct evidence for influence on STAT1.
DUSP11 0.4368 No direct evidence for influence on STAT1.
PRKCQ 0.4343 No direct evidence for influence on STAT1.

MAP3K1 0.4289 No direct evidence for influence on STAT1.
PPP2CA 0.4273 PP2A-dependence was shown for STAT1 nuclear localization and STAT1

target gene expresssion [67]. PP2A also regulates PRMT1, which in turn
regulates STAT1 via methylation [68].

PTPN9 0.4208 No direct evidence for influence on STAT1.
CRKRS 0.417 No direct evidence for influence on STAT1.
EPHB6 0.4149 No direct evidence for influence on STAT1.
STK16 0.414 No direct evidence for influence on STAT1.

PTPN11 0.4136 Dephosphorylates STAT1 to attenuate IFN-γ signaling [69, 70].
CAMK2G 0.4125 Phosphorylates STAT1 S727, promotes TF activity [47, 48, 49].
MAP2K2 0.4117 No direct evidence for influence on STAT1.
MTMR4 0.4109 No direct evidence for influence on STAT1.
ACVRL1 0.4094 No direct evidence for influence on STAT1.
PPP1CC 0.4094 No direct evidence for influence on STAT1.
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Table S8: Modifier Pathway Annotations. Annotations with strong odds ratios when
comparing MONSTER-predicted modifiers to other modifiers predicted by STRING.

GO BP Term MONSTER Count Odds Ratio
intracellular signaling cascade 15 5.69
protein kinase cascade 11 3.45
hemopoiesis 5 4.82
apoptosis 5 4.82
cell death 5 4.82
programmed cell death 5 4.82
hemopoietic or lymphoid organ development 5 4.82
protein amino acid phosphorylation 19 2.84
phosphorylation 19 2.84
organ development 10 2.14
system development 10 2.14
KEGG PATHWAY Term
T cell receptor signaling pathway 3 inf
Tight junction 3 inf
Adipocytokine signaling pathway 5 4.82
Jak-STAT signaling pathway 5 2.29

Table S9: Properties of STAT1 Network Models. Model numbers correspond to the
clusters identified in Figure S9.

Model β1 (s.d.) w1 (s.d.) target probe sets target genes
I 0.24 (0.003) 0.51 (0.003) 1,803 1,559
II −0.29 (0.07) 0.62 (0.008) 2,031 1,735
III −0.004 (0.0007) 0.26 (0.0006) 3,190 2,679

(Input) – – 8,973 6,975
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Table S10: Significantly enriched annotations (1st column) for gene targets in STAT1 network
model II, using all gene targets in the input data as the background, with Bonferroni-corrected p-
values (2nd column). As a control, corrected p-values are also shown for the most correlated genes
(3rd column), and genes with the highest ChIP-seq and PWM-based priors (4th and 5th columns).
‘–’ indicates a p-value > 1 after Bonferroni correction.

GO Biological Process MONSTER Expr ChIP PWM
nucleobase, nucleoside, nucleotide and nucleic
acid metabolic process

5E−38 – 7E−08 –

biopolymer metabolic process 2E−27 – 4E−09 –
DNA metabolic process 4E−24 – 0.045 –
ribonucleoprotein complex biogenesis and as-
sembly

4E−22 – – –

mRNA metabolic process 2E−21 – – –
mRNA processing 9E−21 – – –
RNA splicing 1E−18 – – –
DNA replication 3E−18 – – –
response to DNA damage stimulus 9E−17 – 0.003 –
DNA repair 4E−16 – 0.15 –
ribosome biogenesis and assembly 4E−16 – – –
cell cycle phase 1E−15 – – –
RNA metabolic process 1E−14 – 0.001 –
M phase 5E−14 – – –
oxidative phosphorylation 5E−14 – – –
mitotic cell cycle 2E−12 – – –
rRNA processing 3E−11 – – –
rRNA metabolic process 3E−11 – – –
electron transport 3E−11 – – –
M phase of mitotic cell cycle 1E−10 – – –
ATP synthesis coupled electron transport 4E−10 – – –
organelle ATP synthesis coupled electron trans-
port

4E−10 – – –

macromolecular complex assembly 6E−10 – – –
mitosis 7E−10 – – –
DNA-dependent DNA replication 9E−10 – – –
cellular component assembly 1E−08 – – –
tRNA metabolic process 1E−08 – – –
mitochondrial electron transport, NADH to
ubiquinone

2E−08 – – –

cellular biosynthetic process 5E−08 – – –
nuclear mRNA splicing, via spliceosome 7E−08 – – –
RNA splicing, via transesterification reactions 7E−08 – – –

Continued on next page
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Table S10: Enriched annotations for gene targets in STAT1 network model II (continued).

GO Biological Process MONSTER Expr ChIP PWM
RNA splicing, via transesterification reactions
with bulged adenosine as nucleophile

7E−08 – – –

macromolecule catabolic process 2E−07 – – –
protein-RNA complex assembly 2E−07 – – –
organelle organization and biogenesis 8E−07 – – –
biopolymer catabolic process 3E−06 – – –
cellular macromolecule catabolic process 4E−06 – – –
purine nucleotide biosynthetic process 6E−06 – – –
ribonucleotide biosynthetic process 1E−05 – – –
protein metabolic process 5E−05 – 0.051 –
ribonucleotide metabolic process 6E−05 – – –
intracellular transport 6E−05 – – –
purine nucleotide metabolic process 8E−05 – – –
purine ribonucleotide biosynthetic process 1E−04 – – –
intracellular protein transport across a mem-
brane

2E−04 – – –

protein folding 3E−04 – – –
purine ribonucleotide metabolic process 3E−04 – – –
cell cycle checkpoint 3E−04 – – –
macromolecule biosynthetic process 4E−04 – – –
spindle organization and biogenesis 5E−04 – – –
cellular catabolic process 5E−04 – – –
cellular protein metabolic process 9E−04 – 0.658 –
ubiquitin-dependent protein catabolic process 9E−04 – – –
tRNA aminoacylation for protein translation 0.001 – – –
amino acid activation 0.001 – – –
tRNA aminoacylation 0.001 – – –
tRNA processing 0.001 – – –
modification-dependent macromolecule
catabolic process

0.001 – – –

microtubule-based process 0.001 – – –
modification-dependent protein catabolic pro-
cess

0.001 – – –

proteolysis involved in cellular protein catabolic
process

0.001 – – –

cellular protein catabolic process 0.002 – – –
cellular macromolecule metabolic process 0.002 – – –
nucleobase, nucleoside and nucleotide
metabolic process

0.003 – – –

Continued on next page
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Table S10: Enriched annotations for gene targets in STAT1 network model II (continued).

GO Biological Process MONSTER Expr ChIP PWM
RNA transport 0.004 – – –
nucleic acid transport 0.004 – – –
nucleobase, nucleoside, nucleotide and nucleic
acid transport

0.004 – – –

DNA recombination 0.006 – – –
double-strand break repair 0.006 – – –
RNA localization 0.007 – – –
protein catabolic process 0.007 – – –
interphase of mitotic cell cycle 0.01 – – –
transcription initiation 0.011 – – –
nucleoside monophosphate biosynthetic process 0.012 – – –
nucleoside monophosphate metabolic process 0.012 – – –
interphase 0.012 – – –
amino acid metabolic process 0.017 – – –
nucleotide biosynthetic process 0.017 – – –
sterol biosynthetic process 0.022 – – –
mRNA transport 0.023 – – –
translational initiation 0.025 – – –
recombinational repair 0.026 – – –
double-strand break repair via homologous re-
combination

0.026 – – –

nucleoside phosphate metabolic process 0.032 – – –
nucleotide metabolic process 0.032 – – –
DNA replication initiation 0.038 – – –
ribonucleoside monophosphate biosynthetic
process

0.039 – – –

ribonucleoside monophosphate metabolic pro-
cess

0.039 – – –

coenzyme metabolic process 0.044 – – –
regulation of cellular metabolic process – – 0.002 –
regulation of nucleobase, nucleoside, nucleotide
and nucleic acid metabolic process

– – 0.002 –

ubiquitin cycle – – 0.024 –
regulation of RNA metabolic process – – 0.025 –
regulation of transcription – – 0.03 –
DNA damage response, signal transduction re-
sulting in induction of apoptosis

– – 0.038 –

regulation of transcription, DNA-dependent – – 0.044 –
Continued on next page
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Table S10: Enriched annotations for gene targets in STAT1 network model II (continued).

GO Biological Process MONSTER Expr ChIP PWM
negative regulation of nucleobase, nucleoside,
nucleotide and nucleic acid metabolic process

– – 0.049 –

inflammatory response – – – 0.045

KEGG Pathway
Oxidative phosphorylation 2E−19 – – –
Proteasome 7E−11 – – –
Cell cycle 2E−09 – – –
Pyrimidine metabolism 3E−09 – – –
Aminoacyl-tRNA biosynthesis 1E−05 – 0.452 –
Purine metabolism 3E−05 – – –
RNA polymerase 3E−04 – – –
DNA polymerase 4E−04 – – –
Basal transcription factors 0.003 – – –
One carbon pool by folate 0.017 – – –
Ubiquitin mediated proteolysis 0.02 – – –
Biosynthesis of steroids 0.023 – – –
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Table S11: Significantly enriched annotations (1st column) for gene targets in STAT1 network
model III, using all gene targets in the input data as the background, with Bonferroni-corrected
p-values (2nd column). As a control, corrected p-values are also shown for the most correlated genes
(3rd column), and genes with the highest ChIP-seq and PWM-based priors (4th and 5th columns).
‘–’ indicates a p-value > 1 after Bonferroni correction.

GO Biological Process MONSTER Expr ChIP PWM
neurological system process 9E−26 – – –
G-protein coupled receptor protein signaling
pathway

2E−19 – – –

synaptic transmission 2E−17 – – –
cell-cell signaling 5E−17 – – –
system development 9E−16 – – –
transmission of nerve impulse 4E−15 – – –
cell surface receptor linked signal transduction 5E−12 0.005 – –
nervous system development 4E−11 – – –
ion transport 3E−10 – – –
sensory perception 3E−09 – – –
organ development 1E−07 – – –
metal ion transport 1E−07 – – –
neuron development 8E−07 – – –
tissue development 3E−06 – – –
neurogenesis 4E−06 – – –
axonogenesis 7E−06 – – –
sensory perception of light stimulus 8E−06 – – –
visual perception 8E−06 – – –
generation of neurons 9E−06 – – –
G-protein signaling, coupled to cyclic nu-
cleotide second messenger

1E−05 – – –

neurite development 2E−05 – – –
neuron morphogenesis during differentiation 2E−05 – – –
neurite morphogenesis 2E−05 – – –
cellular morphogenesis during differentiation 4E−05 – – –
cyclic-nucleotide-mediated signaling 6E−05 – – –
potassium ion transport 7E−05 – – –
neuron differentiation 1E−04 – – –
cation transport 2E−04 – – –
feeding behavior 2E−04 – – –
muscle system process 5E−04 – – –
muscle contraction 5E−04 – – –
monovalent inorganic cation transport 5E−04 – – –
signal transduction 7E−04 – – –
G-protein signaling, coupled to cAMP nu-
cleotide second messenger

0.003 – – –

second-messenger-mediated signaling 0.003 – – –
Continued on next page

49



Table S11: Enriched annotations for gene targets in STAT1 network model III (continued).

GO Biological Process MONSTER Expr ChIP PWM
cAMP-mediated signaling 0.013 – – –
neuropeptide signaling pathway 0.014 – – –
sodium ion transport 0.016 – – –
skeletal development 0.021 0.860 – –
ectoderm development 0.026 – – –
central nervous system development 0.028 – – –
brain development 0.041 – – –
biopolymer metabolic process – – 6E−18 –
nucleobase, nucleoside, nucleotide and nucleic
acid metabolic process

– – 7E−15 –

RNA metabolic process – – 1E−08 –
response to DNA damage stimulus – – 9E−06 –
ubiquitin cycle – – 2E−04 –
regulation of cellular metabolic process – – 3E−04 –
DNA metabolic process – – 4E−04 –
protein metabolic process – – 4E−04 –
RNA biosynthetic process – – 0.002 –
DNA repair – – 0.002 –
transcription, DNA-dependent – – 0.002 –
regulation of nucleobase, nucleoside, nucleotide
and nucleic acid metabolic process

– – 0.003 –

cellular protein metabolic process – – 0.005 –
regulation of RNA metabolic process – – 0.006 –
regulation of transcription – – 0.008 –
regulation of transcription, DNA-dependent – – 0.009 –
cellular macromolecule metabolic process – – 0.009 –
biopolymer modification – – 0.019 –
RNA splicing – – 0.029 –
mRNA processing – – 0.038 –
mRNA metabolic process – – 0.044 –
response to wounding – – – 0.048

KEGG Pathway
Neuroactive ligand-receptor interaction 2E−26 0.77 – –
Calcium signaling pathway 0.001 – – –
Cell Communication 0.013 – – –
C21-Steroid hormone metabolism 0.042 – – –
p53 signaling pathway – – 0.045 –
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