Supporting Information

Fluorescent Proton Sensors Based On Energy

Transfer

Cliferson Thivierge, Junyan Han, Roxanne M. Jenkins, and Kevin Burgess^{*} Department of Chemistry, Texas A&M University, Box 30012, College Station, TX 77841 USA

Contents

1.	General Procedures	S2
2.	Scheme for Synthesis of Cassette 10	S4
3.	Synthesis and Characterization	S5
4.	Electrochemical Data	S20
5.	Absorption and Emission Spectra of 1-4, 11-14, E & F	S22
6.	Electrochemical Spectra	S29
7.	NMR Spectra	S38

1. General Procedures

NMR spectra were recorded on 300 MHz or 500 MHz spectrometers (¹H at 300 MHz or 500 MHz and ¹³C at 75 or 125 MHz) at room temperature unless otherwise mentioned. Chemical shifts of ¹H NMR spectra were recorded and reported in ppm from the solvent resonance (CDCl₃ 7.26 ppm, CD₃OD 3.30 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, bs = broad singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constants, and number of protons. Proton decoupled ¹³C NMR spectra were also recorded in ppm from solvent resonance (CDCl₃ 77.16, CD₃OD 49.0 ppm). Analytical thin layer chromatography (TLC) was performed on 0.25 mm silica-gel 60-F plates, and visualized with UV light. Flash chromatography was performed using silica gel (230–600 mesh). MS were measured under ESI, MALDI or APCI conditions. Et₃N was distilled from CaH₂. Other solvents and reagents were used as received.

Determination of Quantum Yields and Molar Absorptivities. Slit width for emission studies were 5 nm for both excitation and emission. Fluorescence spectra were corrected for lamp and PDT sensitivities. The relative quantum yields of the samples were obtained by comparing the area under the corrected emission spectrum of the test sample with that of a solution of standard. The quantum efficiencies of fluorescence were obtained from three measurements with the following equation:

$$\Phi_x = \Phi_{st} \left(I_x / I_{st} \right) \left(A_{st} / A_x \right) \left(\eta_x^2 / \eta_{st}^2 \right)$$

Where Φ_{st} is the reported quantum yield of the standard, I is the area under the emission spectra, A is the absorbance at the excitation wavelength and η is the refractive index of the solvent used, measured on a pocket refractometer. X subscript denotes unknown, and st denotes standard.

Molar absorptivities (ϵ) where measured from Beer's Law plots using three data points.

Electrochemistry. Cyclic voltammograms were recorded using a glassy carbon working electrode ($A = 0.071 \text{ cm}^2$) and referenced to Fc/Fc⁺ and a Pt counter electrode at a scan rate of 200 mV/s. Cyclic voltammograms and differential pulse voltammograms were

recorded using a three-electrode cell. The experimental reference electrode used was a Ag/AgCl prepared by electroplating method. Solutions were deaerated by an argon purge for 5-10 min and a blanket of argon was maintained over the solution while performing the measurements. Experiments were performed in CH₂Cl₂ or DMF solutions containing 0.1 M ^{*n*}Bu₄NBF₄ at room temperature. All potentials are reported relative to Ag/AgCl electrode using Cp₂Fe/Cp₂Fe⁺ as an internal reference ($E_{1/2} = 0.00$ V vs Ag/AgCl in CH₂Cl₂ or DMF at 2mM). The working electrode was washed three times between samples to avoid cross contamination.

2. Scheme for Synthesis of Cassette 10

10 28 %

D

3. Synthesis and Characterization

5. ¹ Iodophenyl BODIPY (**B**) (142 mg, 0.316 mmol), propargyltriethyleneglycylester **A** (100 mg, 0.331 mmol), PdCl₂(PPh₃)₂ (24 mg, 0.032 mmol), CuI (12 mg, 0.064 mmol), Et₃N (0.44 ml, 3.16 mmol) and 5 ml THF were added into a 50 mL round bottom flask. The solvent was degassed three times via the freeze-thaw method to remove oxygen, and then the reaction was heated to 55 °C for 5 h under nitrogen. The reaction solvent was removed under reduced pressure. The crude product was purified by flash column chromatography eluting with 30 % hexane/ethyl acetate to give the desired product as an orange solid (151 mg, 77 %). ¹H NMR (300 MHz, CDCl₃), δ 7.53 (d, *J* = 8.1, 2H), 7.20 (d, *J* = 8.1 Hz, 2H), 5.95 (s, 2H), 4.42 (s, 2H), 3.98 (s, 2H), 3.72-3.78 (m, 2H), 3.63-3.69 (m, 10H), 2.51 (s, 6H), 1.45 (s, 9H), 1.36 (s, 6 H) ¹³C NMR (125 MHz, CDCl₃), δ 169.5, 155.6, 142.8, 140.6, 135.0, 132.3, 131.0, 128.0, 123.4, 121.2, 86.5, 85.4, 81.4, 70.6, 70.5, 70.4, 70.3, 69.2, 68.9,59.0, 27.9, 14.4. MS (ESI) calcd for C₃₄H₄₃BF₂N₂O₆ (M+H)⁺, 624.32, found 624.13. TLC (1:1 EtOAc/Hexane), *R*_f = 0.42.

6. ^{1,2} A mixture of **5** (104 mg, 0.165 mmol), I₂ (100 mg, 0.412 mmol), HIO₃ (58 mg, 0.33 mol) and 10 mL EtOH in a 50 mL flask were warmed up to 60 °C for 20 min, and then it was cooled to 25 °C. The reaction was quenched by addition of Na₂SO₃ (2 mL 1M). Water (20 mL) was added to the reaction mixture, and the product was extracted from water with CH₂Cl₂ (25 mL x 3). The combined organics were concentrated under reduced pressure, and the resulting crude product was purified by flash chromatography eluting with hexane and ethyl acetate (1:1) to give **4** (145 mg, 99%) as a red solid. ¹H NMR (300 MHz, CDCl₃), δ 7.60 (d, *J* = 8.4 Hz, 2H), 7.21 (d, *J* = 8.4 Hz, 2H), 4.47 (s, 2H), 4.02 (s, 2H), 3.78-3.81 (m, 2H), 3.70-3.75 (m, 10H), 2.64 (s, 6H), 1.47 (s, 9H), 1.40 (s, 6 H). ¹³C NMR (125 MHz, CDCl₃), δ 169.9, 157.3, 145.4, 140.6, 135.0, 133.0, 131.3, 128.2, 124.4, 87.3, 86.1, 85.5, 81.8, 71.0, 70.9, 70.9, 70.8, 70.7, 69.7, 69.3, 59.4, 28.4, 17.4, 14.4. MS (MALDI) calcd for C₃₄H₄₁BF₂N₂NaO₆⁺ (M+Na)⁺, 899.10, found 898.91. TLC (1:1 EtOAc/Hexane), *R_f* = 0.45.

7. ² A solution of 2,4-dimethylpyrrole (1.0 mL, 10 mmol), succinic anhydride (400 mg, 4.0 mmol), and BF₃• Et₂O (0.50 mL, 4.0 mmol) in 30 mL toluene was heated to 80 °C under N₂ for 5 h. The mixture was cooled to 25 °C and BF₃•Et₂O (5.0 mL, 40 mmol) and Et₃N (10 mL, 80 mmol) were then added. After stirring for 16 h at 20 °C under N₂ the reaction was quenched with 60 mL of 0.1 M HCl aqueous solution. Extraction was performed and the organic fractions were combined and dried over magnesium sulfate. The organic solvent was removed under reduced pressure and the product was purified via flash silica column with 85 % ethyl acetate:hexane to afford the desired product as an orange solid (203 mg, 18 %). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 6.07 (s, 2H), 3.29-3.35 (m, 2H), 2.62-2.68(m, 2H), 2.52 (s, 6H), 2.44 (s, 6H), ¹³C NMR (75 MHz, CDCl₃), δ (ppm), 176.6 154.8, 142.8, 140.3, 131.2, 122.0, 35.1, 23.4, 16.4, 14.5. MS (ESI) calcd for C₁₆H₁₈BF₂N₂O₂ [M -H]⁻319.15, found 319.15. TLC (50 % EtOAc:Hexane) *R*_f = 0.50.

8. ² Tetramethyl-BODIPY acid **7** (600 mg, 1.87 mmol) was suspended in 200 mL of MeOH. I₂ (1.24 g, 4.87 mmol) was added followed by iodic acid (660 mg, 3.75 mmol) in ~3 mL water was added over 5 min. The mixture was stirred for 30 min at 25 °C. The MeOH was then removed under reduced pressure and the crude product was purified via flash silica column with 50 % ethyl acetate:hexane to afford the desired product as a red solid (574 mg, 54 %). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 3.28-3.32 (m, 2H), 2.45-2.52 (m, 2H), 2.50 (s, 6H), 2.43 (s, 6H), ¹³C NMR (75 MHz, CDCl₃), δ (ppm), 175.1 156.3, 142.5, 142.3, 131.1, 87.0, 34.9, 24.2, 19.3, 16.5. ESI HRMS calcd for C₁₆H₁₆BF₂I₂N₂O₂[M-H]⁻ 570.9362, found 570.9340. TLC (50 % EtOAc:Hexane) $R_f = 0.55$.

9. ¹ A mixture of **6** (65 mg, 0.074 mmol), diacetylfluorescein alkyne **C** ³ (82 mg, 0.186mmol), Et₃N (0.11 mL, 0.74 mmol), Pd(PPh₃)₄ (8 mg, 0.007 mmol), CuI (3 mg, 0.014 mmol) were dissolved in THF (2 mL). After the solution was degassed three times via the freeze-thawed method, the mixture was heated up to 45 °C for 16 h. The reaction solvent was removed under reduced pressure and the crude product was purified by flash column eluting with 50% hexane:ethyl acetate to give the desired product as a light yellow solid (80 mg, 72%). ¹H NMR (500 MHz, CDCl₃), δ 8.08 (m, 2H), 7.73 (dd, J = 8.0, 1.5 Hz, 2H), 7.65(d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.5 Hz, 2H), 7.15 (d, J = 8.2 Hz, 2H), 7.10 (d, *J* = 2.0 Hz, 4H), 6.83 (bs, 4H), 6.83 (d, *J* = 2.0 Hz, 4H), 4.48 (s, 2H), 4.02 (s, 2H), 3.80-3.82 (m, 2H), 3.70-3.75 (m, 10H), 2.75 (s, 6H), 2.32 (s, 12H), 1.58 (s, 6H), 1.47(s, 9H). ¹³C NMR (125 MHz, CDCl₃), δ 169.6, 168.8, 168.2, 159.1, 152.1, 151.8, 151.5, 144.6, 142.1, 137.9, 134.1, 132.8, 131.1, 128.9, 127.9, 127.7, 126.6, 125.8, 124.3, 124.2, 117.8, 116.0, 115.6, 110.5, 94.7, 87.2, 85.3, 84.1, 81.8, 81.5, 70.7, 70.6 (2 C), 70.5, 69.5, 69.0, 59.2, 28.1, 21.1, 13.8, 13.7 MALDI MS calcd for C₈₆H₇₁BF₂N₂NaO₂₀⁺ (M+Na)⁺ 1523.46, found 1523.26. TLC (1:1 EtOAc/Hexane), *R*_f = 0.20.

1. ¹ To **9** (12 mg, 0.01 mmol) in 5 mL 2:1 methanol/THF in was added Na₂CO₃ (3.5 mg, 0.03 mmol). The mixture was stirred for 3 h at 25 °C under N₂. The reaction was quenched by adding aqueous HCl (0.1M, 10 mL) and the product was extracted out of the solution with 75% CH₂Cl₂:¹PrOH (5 mL x 3). The organic layers were washed with brine solution (10 mL) and dried with magnesium sulfate. The desired product was isolated as a purple solid (10 mg, 99 %). ¹H NMR (500 MHz, 75% CD₃OD:CDCl₃), δ 8.00 (s, 2H), 7.74 (dd, *J* = 8.0 Hz, 1.5 Hz, 2H), 7.65 (d, *J* = 7.5Hz, 2H), 7.33 (d, *J* = 8.5 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 6.67 (d, *J* = 2.5 Hz 4H), 6.59 (d, *J* = 8.0 Hz, 4H), 6.51 (dd, *J* = 9.0 Hz, 2.5 Hz, 4H), 4.47 (s, 2H), 4.00 (s, 2H), 3.79-3.81 (m, 2H), 3.71-3.73 (m, 2H), 3.66-3.69 (m, 8H), 2.71 (s, 6H), 1.58 (s, 6H), 1.44 (s, 9H), ¹³C NMR (125 MHz, 75% CD₃OD:CDCl₃), δ 170.9, 170.1, 169.8, 159.5, 153.5, 145.2, 142.9, 138.3, 134.8, 133.4, 131.7, 131.2, 129.6, 128.7, 128.5, 128.0, 126.1, 125.9, 124.9, 116.3, 110.3, 108.2, 103.3, 95.6, 87.4, 86.0, 84.1, 82.7, 71.0, 70.9 (2 C), 70.8 (2 C), 69.7, 69.3, 59.5, 30.2, 28.3, 14.0. MS (MALDI) calcd for C₇₈H₆₃BF2N₂O₁₆⁺ (M+H)⁺ 1333.42, found 1333.44.

3. A mixture of **6** (80 mg, 0.09 mmol), **D** ⁴ (69 mg, 0.20 mmol), Et₃N (0.13 mL, 0.91 mmol), PdCl₂(PPh₃)₂ (6 mg, 0.01 mmol), CuI (4 mg, 0.01 mmol) were dissolved in 3.0 mL THF. The solution was degassed three times via the freeze-thaw method and the mixture was heated to 50 °C for 16 h under N₂. The reaction solvent was removed under reduced pressure and the crude product was purified via flash silica column eluting with 67% hexane:ethyl acetate to give the desired product as a purple solid (89 mg, 74 %). ¹H NMR (500 MHz, CDCl₃), δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.59 (d, *J* = 8.0 Hz, 4H), 7.29 (d, *J* = 8.5 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 4H), 5.99 (s, 4H), 4.48 (s, 2H), 4.02 (s, 2H), 3.80-3.82 (m, 2H), 3.70-3.75 (m, 10H), 2.76 (s, 6H), 2.55 (s, 12H), 1.58 (s, 6H), 1.47(s, 9H), 1.43 (s, 12H), ¹³C NMR (125 MHz, CDCl₃), δ 169.6, 158.9, 155.7, 144.1, 143.0, 141.7, 140.7, 134.8, 134.3, 132.8, 131.9, 131.2, 128.2 (2 C), 128.0, 124.1 (2 C), 121.3, 116.0, 96.0, 87.1, 85.3, 82.9, 81.6, 70.7, 70.6 (3 C), 70.5, 69.5, 69.0, 59.2, 28.1, 14.6 (2 C), 14.6, 13.7. MALDI HRMS calcd for C₇₆H₇₇B₃F₆N₆O₆⁺ (M⁺⁺) 1316.6113, found 1316.6172.

2. A mixture of **8** (30 mg, 0.05 mmol), **C**³ (55 mg, 0.13 mmol), Et₃N (0.30 mL, 2.1 mmol), PdCl₂(PPh₃)₂ (5 mg, 0.01 mmol), and CuI (2 mg, 0.01 mmol) were dissolved in 1.0 mL DMF under N₂. The solution was degassed three times via the freeze-thaw method and then stirred at 40 °C for 4 h and then at 25 °C for 12 h under N₂. The solvent was removed under reduced pressure and the crude product partially purified via flash silica column eluting with 7 % methanol:CH₂Cl₂ to give the acetate protected form of **2** as a purple solid (15 mg).

The product from above (15 mg) was treated with sodium carbonate (6 mg, .05 mmol) in 5.0 mL of methanol. The mixture was stirred at 25 °C for 3 h. The solvent was removed under reduced pressure and extraction was performed using CH_2Cl_2 and 0.1 M HCl aqueous solution. The aqueous layer was washed with CH_2Cl_2 (2 x 5 mL) and the organic fractions were combined and dried over magnesium sulfate. The solvent was then removed under reduced pressure and purified via C-18 preparative HPLC eluting with a 50 – 95 % MeOH and 0.1 % TFA/water linear gradient over 25 min to give the desired product with a retention time of 18 min as a purple solid (2 mg, 4 %).

¹H NMR (500 MHz, CD₃OD), δ 8.08 (s, 2H), 7.87 (d, J = 8.0 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 6.70 (s, 4H), 6.67 (d, J = 8.5 Hz, 4H), 6.58 (d, J = 7.5 Hz, 4H), 3.45 (m, 2H), 3.12 (m, 2H), 2.70 (s, 6H), 2.68 (s, 6H) MALDI HRMS calcd for C₆₀H₃₇BF₂N₂O₁₂ (M-2H/2)⁻² 513.6243, found 513.6244 TLC (5 % MeOH :CH₂Cl₂) $R_f = 0.20$.

4. A mixture of **8** (30 mg, 0.05 mmol), **D** ⁴ (47 mg, 0.14 mmol), Et₃N (0.29 mL, 2.1 mmol), Pd(PPh₃)₄ (8 mg, 0.01 mmol), and CuI (2 mg, 0.01 mmol) were dissolved in 1.5 mL DMF under N₂. The solution was degassed three times via the freeze-thaw method and then stirred for 3 d at 25 °C under N₂. The solvent was removed under reduced pressure and the crude product was purified via flash silica column eluting with 3 % methanol:CH₂Cl₂ followed by recrystalization from methanol to give the desired product as a purple solid (28 mg, 53%). ¹H NMR (300 MHz, CDCl₃), δ 7.65 (d, *J* = 8.5 Hz, 4H), 7.30 (d, *J* = 8.0 Hz, 4H), 6.00 (s, 4H), 3.78 (bs, 1H), 3.46 (m, 2H), 2.73 (s, 6H), 2.70 (m, 2H), 2.66 (s, 6H), 2.56 (s, 12H), 1.45 (s, 12H), ¹³C NMR (125 MHz, CDCl₃), δ 158.2, 155.9, 143.1, 141.5, 140.9, 135.1 (2 C), 132.1, 131.3, 128.4, 124.2, 121.5, 116.6, 96.4, 83.1, 29.8, 15.5 (2 C), 14.8 (2 C), 13.9. MALDI HRMS calcd for C₅₈H₅₃B₃F₆N₆O₂ (M⁺) 1012.4434, found 1012.4472. TLC (1:1 EtOAc:Hexane) *R_f* = 0.30.

11. A mixture of **8** (34 mg, 0.11 mmol), phenylacetylene (47 μL, 0.43mmol), Et₃N (0.15 mL, 1.1 mmol), PdCl₂(PPh₃)₂ (8 mg, 0.01 mmol), and CuI (4 mg, 0.02 mmol) were dissolved in 2 mL THF under N₂. The solution was degassed three times via the freeze-thaw method and then heated to 50 °C for 16 h under N₂. The solvent was removed under reduced pressure and the crude product was purified via flash silica column eluting with 20% methanol:CH₂Cl₂ to give the desired product as a red solid (17 mg, 55 %). ¹H NMR (500 MHz, CDCl₃), δ 7.44-7.46 (m, 4H), 7.27-7.31 (m, 6H), 3.32-3.36 (m, 2H), 2.62 (s, 6H), 2.56 (s, 6H), 2.53-2.57 (m, 2H), ¹³C NMR (125 MHz, 3:1 CDCl₃:CD3OD), δ 174.0, 157.5, 144.9, 141.4, 131.4, 131.2, 128.4, 128.3, 123.2, 116.7, 96.7, 81.4, 24.2, 15.1, 15.1, 13.6. MALDI MS calcd for C₃₂H₂₇BF₂N₂O₂ (M-H)⁻ 519.21, found 519.21. TLC (50 % EtOAc:Hexane) $R_f = 0.20$.

12. A mixture of **8** (30 mg, 0.05 mmol), *m*-ethynylbenzoic acid (23 mg, 0.16 mmol), Et₃N (0.30 mL, 2.1 mmol), PdCl₂(PPh₃)₂ (5 mg, 0.01 mmol), and CuI (2 mg, 0.01 mmol) were dissolved in 1 mL DMF under N₂. The solution was degassed three times via the freeze-thaw method and then heated to 40 °C for 7 h under N₂. The solvent was removed under reduced pressure and the crude product was extracted from ether (20 mL) using 10 % MeOH in 0.1 M NaHCO₃ aqueous solution (3 x 20 mL). The aqueous layers are combined and brought to pH ~ 3 using 1 M HCl to yield purple precipitate. The precipitate is filtered and further purified via C-18 preparative HPLC eluting with a 75 – 95 % MeOH and 0.1 % TFA/water linear gradient over 25 min gave the desired product with a retention time of 11 min as a purple solid (4 mg, 13 %). ¹H NMR (500 MHz, CD₃OD), δ 8.11 (s, 2H), 8.00 (d, *J* = 7.5 Hz, 2H), 7.72 (d, *J* = 7.5 Hz, 2H), 7.50 (t, *J* = 7.5 Hz, 2H), 3.65 (bs, 2H), 2.66 (s, 14H). ¹³C NMR could not be obtained due to poor solubility in organic solvents. ESI MS calcd for C₃₄H₂₇BF₂N₂O₆ (M-H)⁻ 607.19, found 607.19. TLC (5 % MeOH:CH₂Cl₂) *R_f* = 0.10.

13. A mixture of **6** (66 mg, 0.08 mmol), phenylacetylene (42 μL, 0.38 mmol), Et₃N (0.10 mL, 0.75 mmol), PdCl₂(PPh₃)₂ (6 mg, 0.01 mmol), and CuI (3 mg, 0.01 mmol) were dissolved in 5.0 mL THF. The solution was degassed three times via the freeze-thaw method and then heated to 45 °C for 16 h under N₂. The reaction solvent was removed under reduced pressure and the crude product was purified via flash silica column eluting with 50% hexane:ethyl acetate to give the desired product as a purple solid (52 mg, 79%). ¹H NMR (500 MHz, CDCl₃), δ 7.62 (d, *J* = 8.0 Hz, 2H), 7.45-7.47 (m, 4H), 7.31-7.34 (m, 6H), 7.27 (d, *J* = 8.5 Hz, 2H), 4.47 (s, 2H), 4.02 (s, 2H), 3.80-3.81 (m, 2H), 3.69-3.75 (m, 10H), 2.72 (s, 6H), 1.54 (s, 6H), 1.47(s, 9H), ¹³C NMR (125 MHz, CDCl₃), δ 169.6, 158.7, 143.7, 141.4, 134.5, 132.7, 131.3, 130.9, 128.3, 128.1, 128.0, 124.0, 123.2, 116.3, 96.6, 86.9, 85.4, 81.5, 81.4, 70.7, 70.6 (2 C), 70.5, 69.4, 69.0, 59.1, 28.1, 13.7, 13.6. MALDI MS calcd for C₅₀H₅₁BF₂N₂NaO₆⁺ (M+Na)⁺ 847.37, found 847.12.

14. A mixture of **6** (58 mg, 0.066 mmol), *m*-ethynylbenzoic acid (30 mg, 0.20 mmol), Et₃N (0.10 mL, 0.75 mmol), PdCl₂(PPh₃)₂ (5 mg, 0.003 mmol), and CuI (3 mg, 0.01 mmol) were dissolved in 5.0 mL THF. The solution was degassed three times via the freeze-thaw method and heated to 45 °C for 16 h under N₂. The reaction solvent was removed under reduced pressure and the crude product was purified by flash silica column eluting with 80% CH₂Cl₂:MeOH to give the desired product as a purple solid (35 mg, 58%). ¹H NMR (500 MHz, CD₃OD), δ 8.12 (s, 2H), 8.01 (d, *J* = 8.0 Hz, 2H), 7.75-7.78 (m, 4H), 7.53-7.58 (m, 6H), 4.49 (s, 2H), 4.00 (s, 2H), 3.76-3.77 (m, 2H), 3.66-3.69 (m, 4H), 3.61-3.64 (m, 6H), 2.71 (s, 6H), 1.60 (s, 6H), 1.44 (s, 9H), ¹³C NMR (125 MHz, CD₃OD), δ 166.9, 159.2, 144.9, 141.4, 136.0, 135.0, 133.5, 132.8, 132.0, 131.8, 130.2, 129.7, 129.3, 125.1, 124.4, 116.5, 108.8, 96.6, 88.5, 85.6, 82.8, 81.2, 71.2, 71.1, 70.0, 69.3, 59.2, 32.6, 30.5, 28.2, 23.3, 14.3, 13.8. MALDI HRMS calcd for C₅₂H₅₁BF₂N₂KO₁₀⁺ (M+K)⁺ 951.3245, found 951.3284.

S-1. Tetramethyl-BODIPY ester **S-A** ⁵ (150 mg, 1.1 mmol) was suspended in 15 mL of EtOH. I₂ (290 mg, 1.1 mmol) was added and iodic acid (170 mg, 0.95 mmol) in ~0.7 mL water was added over 20 min. The mixture was stirred for 20 min at 60 °C and then at 25 °C for 30 min. Formed precipitate was filtered to afford the desired product as a red solid (230 mg, 86 %) in adequate purity. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 3.75 (s, 3H), 3.38 (t, *J* = 9Hz, 2H), 2.62 (s, 6H), 2.50 (m, 8H). Compound solubility to poor for carbon NMR. MALDI HRMS calcd for C₁₆H₁₈BF₂I₂N₂O₂[M-H]⁻ 584.9519, found 584.9532. TLC (4:1 Hexane:EtOAc) *R*_f = 0.45.

10. A mixture of **S-1** (20 mg, 0.03 mmol), **D** (24 mg, 0.07 mmol), Et₃N (0.19 mL, 1.4 mmol), PdCl₂(PPh₃)₂ (4 mg, 0.01 mmol), and CuI (2 mg, 0.01 mmol) were dissolved in 1.0 mL DMF under N₂. The solution was degassed three times via the freeze-thaw method and then stirred for 3 d at 25 °C under N₂. The solvent was removed under reduced pressure and the crude product was purified via flash silica column eluting with 3:1 Hexane:EtOAc followed by recrystalization from CH₂Cl₂/hexanes to give the desired product as a purple solid (10 mg, 28%). ¹H NMR (300 MHz, CDCl₃), δ 7.64 (d, *J* = 8.4 Hz, 4H), 7.30 (d, *J* = 8.1 Hz, 4H), 6.00 (s, 4H), 3.78 (s, 3H), 3.43 (b, 2H), 2.73 (s, 6H), 2.65 (s, 8H), 2.56 (s, 12H), 1.45 (s, 12H), ¹³C NMR (125 MHz, CDCl₃), δ 172.0, 158.2, 156.0, 144.6, 143.1, 141.6, 140.9, 135.1, 132.2, 131.4, 128.5, 124.2, 121.5, 96.3, 83.1, 52.4, 35.2, 15.5, 14.8 (2 C), 13.9. X-Ray obtained for this compound (see text) MALDI HRMS calcd for C₅₉H₅₅B₃F₆N₆O₂ (M⁺⁺) 1026.4591, found 1026.4607. TLC (4:1 EtOAc:Hexane) *R*_f = 0.20.

4. Complete Electrochemical Data

Cyclic Voltammetry (CV)								
cmpd	E _{onset,ox} (V)	HOMO (eV)	<i>E</i> _{onset,red} (V)	LUMO (eV)	E _g (eV)			
\mathbf{E}^{a}	+0.68	5.84	-1.32	3.84	2.00			
\mathbf{F}^{b}	+0.33	5.48	-1.03	4.12	1.36			
$\mathbf{F}_{\mathrm{Na}}^{}\mathrm{b,d}}$	+0.04	5.19	-1.67	3.48	1.71			
11 ^a	+0.87	6.03	-0.88	4.28	1.75			
12 ^b	+0.40	5.55	-1.00	4.16	1.39			
13 ^a	+0.99	6.15	-0.91	4.28	1.87			
14 ^b	+0.49	5.64	-0.93	4.22	1.42			
14 ^c	+0.49	5.64	-0.92	4.23	1.41			

Table S1. Electrochemical data from *onset pontentials* for **11** - **14**, **E**, and **F**. All experiments were recorded using a glassy carbon working electrode ($A = 0.071 \text{ cm}^2$) referenced to Fc/Fc⁺ and a Pt counter electrode at a scan rate of 200 mV/s. All potentials are reported vs. Fc/Fc⁺ and all HOMO and LUMO energies are derived form electrochemical results based on Fc/Fc⁺ = 5.1 eV vs vacuum. All solvents were dearated using Ar_(g). a. CH₂Cl₂ solution b. DMF solution. c. DMF solution (0.1 M pyridine). d. xanthene was first reacted with NaOH to obtain the sodium salt.

	Cyclic Voltammetry (CV)							
cmpd	E _{onset,ox} (V)	HOMO (eV)	E _{onset,red} (V)	LUMO (eV)	E _g (eV)			
\mathbf{E}^{a}	+1.22	6.38	-1.43	3.73	2.65			
\mathbf{F}^{b}	+0.72	5.87	-1.25	3.90	1.97			
${F_{\text{Na}}}^{\text{b,d}}$	+0.25	5.40	-1.89	3.26	2.14			
11 ^a	+1.20	6.36	-1.22	3.94	2.42			
12 ^b	+0.80	5.95	-1.14	4.01	1.94			
13 ^a	+1.21	6.37	-1.12	4.07	2.33			
14 ^b	+0.79	5.94	-1.09	4.06	1.88			
14 ^c	+0.80	5.95	-1.12	4.03	1.92			

Table S2. Electrochemical data from *peak potentials* for **11** - **14**, **E**, and **F**. All experiments were recorded using a glassy carbon working electrode ($A = 0.071 \text{ cm}^2$) referenced to Fc/Fc⁺ and a Pt counter electrode at a scan rate of 200 mV/s. All potentials are reported vs. Fc/Fc⁺ and all HOMO and LUMO energies are derived form electrochemical results based on Fc/Fc⁺ = 5.1 eV vs vacuum. All solvents were dearated using Ar_(g). a. CH₂Cl₂ solution b. DMF solution. c. DMF solution (0.1 M pyridine). d. xanthene was first reacted with NaOH to obtain the sodium salt.

5. Absorption and Emission Spectra of 1-4, 11-14, E &F

S23

S24

Figure S1. Absorption spectra of cassettes **1** - **4** (at 10^{-5} M conc in 1:1 ethanol/CH₂Cl₂); throughout, spectra recorded without added based are shown in blue, and with ⁿBu₄NOH (concentration of 1 x 10^{-4} M) are shown in red.

Figure S2. Spectra of compounds E, F, 11-14 in 1:1 ethanol/ CH_2Cl_2 1x10⁻⁶ M: **a** absorbance; **b** absorbance with 8x10⁻⁵ M Bu₄NOH; **c** emission; **d** emission with 8x10⁻⁵ M Bu₄NOH.

6. Electrochemistry Spectra

CV of **3**

CV of **11**

CV of **13**

CV of E

CV of F

CV of F-Na

7. NMR Spectra ¹H NMR of compound **5** (CDCl₃, 300 MHz)

¹³C NMR of compound **5** (CDCl₃, 125 MHz)

¹H NMR of compound **6** (CDCl₃, 300 MHz)

¹³C NMR of compound 6 (CDCl₃, 125 MHz)

¹H NMR of 7 (CDCl₃)

¹³C NMR of 7 (CDCl₃)

¹H NMR of 8 (CDCl₃)

¹³C NMR of 8 (CDCl₃)

¹³C NMR of compound **9** (CDCl₃, 125 MHz)

¹H NMR of 1 (1:2 CDCl₃/CD₃OD)

¹³C NMR of 1 (1:2 CDCl₃/CD₃OD)

¹H NMR of 2 (CD₃OD)

¹H NMR of 3 (CDCl₃)

¹H NMR of 4 (CDCl₃)

¹H NMR of 11 (1:2 CDCl₃/CD₃OD)

¹³C NMR of 11 (1:2 CDCl₃/CD₃OD)

¹H NMR of 12 (CD₃OD)

¹H NMR of 13 (CDCl₃)

¹³C NMR of 13 (CDCl₃)

¹H NMR of 14 (CD₃OD)

¹³C NMR of 14 (CD₃OD)

¹H NMR of S-1 (CDCl₃)

¹H NMR of 10 (CDCl₃)

¹³C NMR of 10 (CDCl₃)

References

(1) Han, J.; Loudet, A.; Barhoumi, R.; Burghardt, R. C.; Burgess, K. J. Am. Chem. Soc. 2009, 131, 1642-1643.

(2) Lim, S. H.; Thivierge, C.; Nowak-Sliwinska, P.; Han, J.; Van den Bergh, H.; Wagnieres, G.; Burgess, K.; Lee, H. B. J. Med. Chem. 2010, 53, 2865-2874. (and references therein).

(3) Thoresen, L. H.; Jiao, G. S.; Haaland, W. C.; Metzker, M. L.; Burgess, K. *Chem. Eur. J.* 2003, *9*, 4603-10.

(4) Wan, C.-W.; Burghart, A.; Chen, J.; Bergstroem, F.; Johansson, L. B. A.; Wolford, M. F.; Kim, T. G.; Topp, M. R.; Hochstrasser, R. M.; Burgess, K. *Chem. Eur. J.* 2003, *9*, 4430-4441.

(5) Boldyrev, I. A.; Zhai, X.; Momsen, M. M.; Brockman, H. L.; Brown, R. E.; Molotkovsky, J. G. *J. Lipid Res.* 2007, *48*, 1518-1532.