





Supplementary figure 2. Intensity measurements for miRNAs with detectable eQTLs (FDR < 10%)



**Supplementary figure 3.** Summary of miRNA-mRNA correlation analysis. A. Illustration of the enrichment analysis. Fisher's exact test statistics for all pairwise comparisons between each set of miRNA signature sets and each category in GO Biological Process are computed. P-values are corrected for multiple hypothesis testing using a Bonferroni's correction. The same analysis is repeated using sets in KEGG Pathways and Body Atlas Tissue Enrichment databases. Significant enrichment between the sets are defined as those with a corrected p-value of less than 0.05. B. Histogram showing the top 10 categories for GO Biological Process category in terms of number of enriched miRNAs signature sets. C. Histogram showing the number of enriched miRNA signature sets in each KEGG pathway category.

Cell cycle







**Complement & Coagulation pathway** 

200







mmu-mir-203

mmu-mir-22

mmu-mir-29b

mmu-mir-29

mu-mer-99a

**Supplementary figure 4.** Fisher exact test for significant association between two miRNA signature set associated with the same KEGG pathway. –log10 pvalues were used to build the heatmap.

1 2 3 4 5 6 7 8 9

200

|                   |                                              | miRNA signature |             | Overlap                   | Nominal              | Corrected            |
|-------------------|----------------------------------------------|-----------------|-------------|---------------------------|----------------------|----------------------|
| MicroRNA          | Category                                     | set size        | GO set size | (Enrichment) <sup>a</sup> | p-value <sup>b</sup> | p-value <sup>b</sup> |
| GO Biological Pro | cess                                         |                 |             |                           |                      |                      |
| mmu-mir-92        | RNA splicing                                 | 431             | 265         | 32(4.43)                  | 1.55E-12             | 1.02E-08             |
| mmu-mir-92        | DNA replication                              | 431             | 216         | 25(4.25)                  | 1.12E-09             | 7.35E-06             |
| mmu-mir-130b      | chromosome segregation                       | 1434            | 81          | 29(3.95)                  | 3.45E-11             | 2.26E-07             |
| mmu-mir-449       | spindle organization and biogenesis          | 2506            | 32          | 20(3.94)                  | 3.03E-09             | 1.98E-05             |
| mmu-mir-192       | oxidative phosphorylation                    | 1334            | 60          | 19(3.75)                  | 2.48E-07             | 1.63E-03             |
| mmu-mir-20a       | DNA replication initiation                   | 2962            | 30          | 21(3.74)                  | 1.23E-09             | 8.08E-06             |
| mmu-mir-130b      | DNA-dependent DNA replication                | 1434            | 77          | 26(3.72)                  | 1.54E-09             | 1.01E-05             |
| mmu-mir-449       | negative regulation of DNA metabolic process | 2506            | 33          | 19(3.63)                  | 5.08E-08             | 3.33E-04             |
| mmu-mir-92        | chromatin modification                       | 431             | 266         | 26(3.59)                  | 1.89E-08             | 1.24E-04             |
| mmu-mir-92        | mRNA metabolic process                       | 431             | 318         | 31(3.58)                  | 8.38E-10             | 5.49E-06             |
| KEGG Pathways     |                                              |                 |             |                           |                      |                      |
| mmu-mir-150       | Ribosome                                     | 543             | 75          | 48(4.75)                  | 1.35E-24             | 2.68E-22             |
| mmu-mir-19a       | DNA replication                              | 618             | 33          | 23(4.55)                  | 2.58E-12             | 5.10E-10             |
| mmu-mir-15b       | Cell cycle                                   | 192             | 108         | 23(4.47)                  | 5.56E-10             | 1.10E-07             |
| mmu-mir-296       | Ribosome                                     | 470             | 75          | 39(4.46)                  | 5.49E-18             | 1.09E-15             |
| mmu-mir-449       | DNA replication                              | 703             | 33          | 25(4.35)                  | 2.53E-13             | 5.02E-11             |
| mmu-mir-193       | Ribosome                                     | 411             | 75          | 30(3.93)                  | 6.63E-12             | 1.31E-09             |
| mmu-mir-299       | Complement and coagulation<br>cascades       | 344             | 69          | 23(3.91)                  | 3.93E-09             | 7.79E-07             |
| mmu-mir-363       | Ribosome                                     | 599             | 75          | 43(3.86)                  | 9.28E-18             | 1.84E-15             |
| mmu-mir-29c       | Oxidative phosphorylation                    | 312             | 119         | 34(3.69)                  | 4.85E-12             | 9.59E-10             |
| mmu-mir-20a       | DNA replication                              | 785             | 33          | 23(3.58)                  | 4.29E-10             | 8.50E-08             |

Supplementary Table 2. Top 10 results (ordered by enrichment fold-change) for GO Biological Process Enrichment, KEGG Pathways Enrichment

<sup>a</sup>The number in the parentheses is the fold-change enrichment. The fold-change enrichment is defined to be the observed overlap divided by the observed overlap.

<sup>b</sup>The nominal p-value represents the Fisher's exact test statistics while the corrected p-value represents the Bonferroni-corrected p-value (nominal p-value multiplied by the number of sets searched).

|                   |             |                                                                       | miRNA signature | GO set | Overlap                   | Nominal              | Corrected            |
|-------------------|-------------|-----------------------------------------------------------------------|-----------------|--------|---------------------------|----------------------|----------------------|
| MicroRNA          | seed (6mer) | Category                                                              | set size        | size   | (Enrichment) <sup>a</sup> | p-value <sup>™</sup> | p-value <sup>®</sup> |
| GO Biological Pro | ocess       |                                                                       |                 |        |                           |                      |                      |
| mmu-mir-92        | GTGCAA      | chromosome organization and biogenesis                                | 168             | 494    | 25(4.76)                  | 8.57E-11             | 5.61E-07             |
| mmu-mir-150       | TGGGAG      | immune response-regulating cell surface receptor signaling pathway    | 912             | 87     | 18(3.59)                  | 1.86E-06             | 1.22E-02             |
| mmu-mir-150       | TGGGAG      | immune response-regulating signal transduction                        | 912             | 111    | 22(3.44)                  | 3.02E-07             | 1.98E-03             |
| mmu-mir-181a      | GAATGT      | regulation of cell-cell adhesion                                      | 2571            | 31     | 17(3.37)                  | 9.76E-07             | 6.39E-03             |
| mmu-mir-150       | TGGGAG      | immune response-activating signal transduction                        | 912             | 108    | 21(3.37)                  | 7.79E-07             | 5.10E-03             |
| mmu-mir-449       | CACTGC      | regulation of DNA metabolic process                                   | 1255            | 86     | 23(3.37)                  | 1.47E-07             | 9.60E-04             |
| mmu-mir-199a      | ACTGGG      | positive regulation of cellular component organization and biogenesis | 758             | 134    | 21(3.27)                  | 1.55E-06             | 1.02E-02             |
| mmu-mir-130b      | TGCACT      | DNA replication                                                       | 608             | 216    | 27(3.25)                  | 6.87E-08             | 4.50E-04             |
| mmu-mir-34c       | CACTGC      | extracellular structure organization and biogenesis                   | 491             | 248    | 25(3.25)                  | 2.38E-07             | 1.56E-03             |
| mmu-mir-132       | CTGTTA      | immune response-activating signal transduction                        | 918             | 108    | 20(3.19)                  | 3.47E-06             | 2.27E-02             |
| KEGG Pathways     |             |                                                                       |                 |        |                           |                      |                      |
| mmu-mir-20a       | CACTTT      | Cell cycle                                                            | 377             | 108    | 33(3.27)                  | 2.50E-10             | 4.94E-08             |
| mmu-mir-19a       | TTGCAC      | T cell receptor signaling pathway                                     | 306             | 94     | 22(3.08)                  | 1.12E-06             | 2.22E-04             |
| mmu-mir-301       | TGCACT      | Small cell lung cancer                                                | 355             | 86     | 23(3.04)                  | 7.00E-07             | 1.39E-04             |
| mmu-mir-218       | AGCACA      | T cell receptor signaling pathway                                     | 426             | 94     | 30(3.02)                  | 1.02E-08             | 2.02E-06             |
| mmu-mir-301       | TGCACT      | Pancreatic cancer                                                     | 355             | 72     | 19(3)                     | 8.27E-06             | 1.64E-03             |
| mmu-mir-429       | CAGTAT      | Small cell lung cancer                                                | 236             | 86     | 15(2.98)                  | 1.07E-04             | 2.12E-02             |
| mmu-mir-449       | CACTGC      | T cell receptor signaling pathway                                     | 342             | 94     | 23(2.89)                  | 1.97E-06             | 3.90E-04             |
| mmu-mir-449       | CACTGC      | B cell receptor signaling pathway                                     | 342             | 66     | 16(2.86)                  | 8.39E-05             | 1.66E-02             |
| mmu-mir-218       | AGCACA      | Glioma                                                                | 426             | 63     | 19(2.86)                  | 1.41E-05             | 2.79E-03             |
| mmu-mir-32        | GTGCAA      | Small cell lung cancer                                                | 264             | 86     | 16(2.84)                  | 1.08E-04             | 2.14E-02             |

Supplementary Table 3. Top 10 results (ordered by enrichment fold-change) for miRNA signature sets (significant correlation and at least 1 hexamer seed)

<sup>a</sup>The number in the parentheses is the fold-change enrichment. The fold-change enrichment is defined to be the observed overlap divided by the observed overlap.

<sup>b</sup>The nominal p-value represents the Fisher's exact test statistics while the corrected p-value represents the Bonferroni-corrected p-value (nominal p-value multiplied by the number of sets searched).