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Order parameters and folding times

We define the fraction of ordered contacts Qs relative to a given structure “s” (not necessarily the

native state) as

Qs = N−1
s ∑

(i, j)

1
1+ exp(γ(ri j−λ r0

i j))
(1)

where the sum runs over the Ns pairs (i, j) of native atomic contacts which are separated by dis-

tances ri j in the configuration of interest and by r0
i j in “s” (γ = 5 Å−1; λ = 1.5). Only atom pairs

closer than 4.5 Å in “s”, belonging to residues separated by more than 2 in sequence are included.

We then define the global order parameter Qn−nn = Qn−Qnn, where Qn and Qnn are defined as

above using the native structure and misfolded intermediate illustrated in Fig. 1 in the main text.

Note that while the symbol Q is often used in the literature to refer to native contacts, we have

generalized it here and in our previous work on the equilibrium properties of GB11 to refer to
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similarity to any structure; an analogous measure is the structural overlap function2 (although the

latter runs from 1 for unfolded to 0 for folded).

Maximum Likelihood folding/unfolding times

Folding and unfolding times were estimated via maximum likelihood. In the case of a single

exponential distribution of folding times, the maximum likelihood folding time is given by:

τf = N−1
f

{ Nf

∑
i=1

ti +
N

∑
i=Nf+1

Ti

}
(2)

where the first sum runs over the first passage times ti for the Nf trajectories which fold, and the

second over the simulation lengths Ti for the trajectories which do not fold. The error was estimated

as τf/N1/2
f . The corresponding maximum log-likelihood is

lnL(SE) =−τ
−1
f

{ Nf

∑
i=1

ti +
N

∑
i=Nf+1

Ti

}
−Nf lnτf (3)

For a double exponential distribution of folding times, the log-likelihood function is:

lnL(DE) =
Nf

∑
i=1

ln[A1τ
−1
1 eti/τ1 +(1−A1)τ

−1
2 eti/τ2]

+
N

∑
i=Nf+1

ln[A1eTi/τ1 +(1−A1)eTi/τ2] (4)

Since there is no simple expression for the maximum likelihood parameters in this case, the param-

eter space was sampled by Metropolis Monte Carlo in which − lnL was used as the energy. The

maximum likelihood parameters were determined by simulated annealing from a temperature of

5.0 to 0.0; the posterior distribution of parameters was obtained from a simulation at a temperature

of 1.0 (uniform prior).

The likelihood ratio D = −2(lnL(SE)− lnL(DE)) was used to test whether the double expo-

nential (three parameters) was significantly better than single exponential (one parameter). For the
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folding simulations initiated from the U-A ensemble, the log-likelihood was essentially identical

for single and double exponential solutions, therefore the single exponential was more appropriate.

For the simulations initiated from the U-B ensemble at 350 K, D = 13.1, i.e. the double exponen-

tial provides a better fit at better than 1% significance. For the simulations initiated from the U-B

ensemble at 300 K, D = 3.15, indicating that the double exponential is probably a better fit, but

only at an ∼ 20% significance level.

Theoretical estimate of transition-path durations

An estimate of the transition-path time can be made by assuming diffusive dynamics over a

parabolic barrier, using an expression due to Szabo:3

〈τTP〉 ≈
ln[2eγβ∆G‡]

Dβ (ω‡)2 (5)

In the above, γ = 0.577.. is the Euler-Mascheroni constant, ∆G‡ is the height of the barrier, D is

the diffusion coefficient for movement along the coordinate, and (ω‡)2 gives the curvature of the

barrier. If in addition it is assumed that curvature of the unfolded well (ω)2 is similar to that of the

barrier on the given coordinate (see Fig. 1 of the main text), then the expression can be rewritten

in terms of the Kramers preexponential factor k0 = Dωω‡β/2π , giving

〈τTP〉 ≈
ln[2eγβ∆G‡]

2πk0
=

ln[2eγβ∆G‡]

2πk exp[β∆G‡]
(6)

Using the barrier heights for folding on Qn−nn of 6.0, 4.4 and 4.3 kBT at 300, 325 and 350 K

respectively, and the mean first passage times from U-A in Table 1 of the main text, we estimate

transition-path times of 71, 66 and 31 ns at 300, 325 and 350 K respectively, similar to those

obtained from simulation.
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Explanation for observed folding amplitudes

The observed amplitudes in the simulations initiated from UA and UB can be explicitly rational-

ized using a simplified chemical kinetics model, shown below. Note that this model is a minimal

explanation for the observed kinetics, but a more complex model would be needed to accurately

reflect the complete microscopic folding dynamics. We plan to build such a model in our future

work.

FU U
k 1

k−1

k
2

S B

In this scheme, the unfolded state is considered to consist of an unstructured subensemble UB as

defined in the main text and a structured subensemble US, defined as the remainder of the unfolded

state. The motivation for the chosen 3-state scheme comes from the fact that folding events always

appear from the unstructured subensemble UB (several examples are given in Fig. 3 in the main

text). The equilibrium unfolded state, UA, comprises both US and UB with the correct relative

weights. We note that the fraction folded PF(τ) obtained from this scheme would be identical to

the cumulative distribution of first passage times P(t < τ) for folding discussed in the main text.

The two non-zero eigenvalues of the scheme are given by

λ± = [k1 + k−1 + k2±
√
(k1 + k−1 + k2)2−4k1k2]/2 (7)

The evolution of the folded fraction is determined by the initial populations P0
S , P0

B, where P0
S +

P0
B = 1 as:

PF(τ) = P0
S

[
1+

λ−
λ+−λ−

e−λ+τ − λ+

λ+−λ−
e−λ−τ

]
+P0

B

[
1+

λ−− k2

λ+−λ−
e−λ+τ − λ+− k2

λ+−λ−
e−λ−τ

]
(8)

These solutions can be used to explain the observed amplitudes for the different initial conditions

in the main text. For example, at 350 K, the eigenvalues from our fit are λ+ = 1/τ2 = 100 µs−1

4



F

µ

µ

F

 0.01 0.001  0.1  1  10

 1

 0.8

 0.6

 0.4

 0.2

 0

 0.05

 0.1

 0.15

 0.2

 0
 0.001  0.01  0.1  1

P

P

Time [  s]

Time [  s]

Figure S5: Folded fraction PF(t) obtained from kinetic models. Blue curve is single exponential
with time scale λ−. Green, red, magenta curves are obtained from Eq. 9 with respective initial
conditions (P0

S ,P
0
B) of (0,1), (1,0), (0.9,0.1). Inset: expanded time scale showing more of the

complete transients. Broken vertical line indicates the time at which trajectories at 350 K were
truncated (0.5 µs).

and λ− = 1/τ1 = 0.159 µs−1. Note that the amplitudes for the relaxation of the US population

are determined entirely by the kinetic eigenvalues, and the amplitudes for simulations initiated

from UB are known from the fit in the main text (0.026 and 0.974 for the fast and slow phases

respectively). We can therefore write:

PF(τ)≈ P0
S

[
1+0.0016e−λ+τ −1.0016e−λ−τ

]
+P0

B

[
1−0.026e−λ+τ −0.974e−λ−τ

]
(9)

Although not needed here, these amplitudes correspond to the microscopic rates k1 = 5.77 µs−1,

k−1 = 91.6 µs−1 and k2 = 2.76 µs−1 in the above scheme. The reason the fast mode is not

observed for simulations initiated from UA is that in the equilibrium unfolded state, P0
S � P0

B,

and the contribution to the relaxation of P0
S from the fast mode λ+ is very small. Only when the

simulations are initiated from UB (P0
B = 1), is there an appreciable contribution from the fast mode.

This can be seen from the curves plotted in Figure S5: of the given initial conditions, only P0
B = 1

results in an noticeable deviation from a slow single-exponential relaxation.
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Figure S6: The population in each state, folded (F), structured unfolded (UB), and unstructured
unfolded (US) is shown as a function of time for simulations at 350 K. The top and bottom panels
are the data from simulations starting from U-B and U-A ensembles, respectively.

The reason the first passage times are biased toward the fast phase is because the simulations

are terminated after a relatively short time, where the major contribution to the increase in PF(τ),

or P(t < τ) comes from the fast mode. Comparing the PF(τ) on short and long time scales (inset

of Figure S5) makes the origin of this bias clear.

Figure S6 shows the population data in each state from starting ensembles U-A (bottom panel)

and U-B (top panel) as a function of time, averaged over simulations at 350 K. It is clear that when

simulations are started from U-B, the fast mode is associated with folding as well as non-native

structure formation (an increase in US).

Potentials of mean force for folded/unfolded state

We have calculated the potential of mean force (PMF) as a function of all the reaction coordinates

separately for folded (Qn−nn > 0.7) and unfolded (Qn−nn < 0.1) states over all the trajectories at

300 K, shown in Figure S7. Whereas most of the order parameters (Qturn, φ , Qhb) assume only
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Figure S7: Separate free energy surfaces for the folded state (Qn−nn > 0.7; red) and unfolded state
(Qn−nn < 0.2; black) for four of the reaction coordinates are shown at 300 K.

native-like values in the native state, the distribution of hydrophobic contacts is found to be rather

broad. Fig. 4 (A)-(D) in the main text show that, although folding clearly does favour formation of

hydrophobic interactions, these fluctuate much more than the other contacts, and are less obviously

correlated with overall folding. This clearly suggests that the formation of hydrophobic contacts,

while correlated with folding, is not by itself a reliable indicator of folding, i.e. is a poor reaction

coordinate.

Definition of ACF matrices and distances

We quantify the order of contact formation using an “average contact formation” (ACF) matrix

A. We define a fraction of native contacts for each residue i, Qi, as the fraction of all the native

contacts in which i is a member of the contacting pair. We then define the elements of A, ai j as the

average degree of contact formation Qi of residue i when Qn−nn lies in interval j. We discretized

Qn−nn into intervals of width 0.1 between 0 and 0.8. The average was calculated for each transition

path, defined as a trajectory segment spanning Qn−nn = 0.1 and Qn−nn = 0.8. To provide context,

1000 steps either side of each transition path were also included in the average.
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Figure S8: Dependence of number of clusters on the cluster radius, for clustering of ACF matrices
with the leader algorithm. The red arrow indicates the chosen cluster radius for analysis.

The “distance” between two pathways is given by the Euclidean distance between their ACF

matrices. We clustered the pathways using a simple “leader” algorithm with a cluster radius of

0.3. The leader algorithm assigns the first data point to the first cluster. Subsequent data points are

compared to the first member of each cluster. If the distance between a new data point and the first

member of at least one of the current clusters is less than the cutoff, the datum is assigned to the

cluster whose first member it is closest to. Otherwise the data point becomes the first member of a

new cluster. The process is continued until all data are assigned to a cluster.

We found that over a range of cutoff distances, we obtained 3 clusters, one of which was an

outlier (Figure S8). The outlier corresponds to a very short-lived unfolding event where the protein

only visits Qn−nn < 0.1 briefly, before refolding: this therefore probably does not correspond to a

true unfolding event. Below ∼ 0.3, we found a rapid increase in clusters, while above ∼ 0.45, all

data fell into a single cluster. We used a cutoff of 0.3 for subsequent analysis.

The ACF matrices for all transition paths are summarized in Figure S9.
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Figure S9: ACF matrices for all folding/unfolding trajectories. Matrices are grouped by cluster
number (cluster 1 = “termini first”; cluster 2 = “zipper”; cluster 3 is an outlier) and by temperature.
The temperature and initial conditions used for each trajectory are shown above the matrices. Note
that a line of zeros in the centre of a matrix is due to a rapid crossing for which no data were saved
in that interval of Qn−nn.
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