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Pollutant Measurement and Analytical Methods. The cooking-area
monitors were placed about 1-m above ground level and 1-m away
from cooking stoves, and the living-area monitors were installed
along the wall. Because we had a limited number of integrated
monitors and because operating and maintaining monitors in
distant neighborhoods was time-intensive, we restricted simul-
taneous operation to two households in the same neighborhood
per 48 h. Measurements took place between November 2006 and
August 2007, with the measurement schedule for each neigh-
borhood provided elsewhere (1).
Blanks and duplicates (i.e., side-by-side measurements) were

collected inmultiple homes.We collected a total of 113 PM2.5 and
113 PM10 samples (Table S2). These samples included 14 PM2.5
duplicates, 13 PM10 duplicates, 9 PM2.5 blanks, and 10 PM10
blanks. In addition, we conducted repeated 48-h PM2.5 and PM10
measurements in four and five households, respectively. We cal-
culated coarse PM (PM2.5–10) as the difference betweenmeasured
PM10 and PM2.5 for each household or rooftop site.
Integrated PM.Methods for measurements at rooftop ambient sites
have been described in a previous article (1). All integrated PM
household samples were collected on PTFE filters with a ring
(Pall Life Sciences; Teflo, 0.2-μm pore size, 37-mm diameter),
back-supported by a Whatman drain disk. PM10 measurements
used a personal exposure monitor (PEM) with a D50 of 10 μm
(aerodynamic diameter) at 4 L per minute (LPM) (±10%), with
an internal level greased well serving as the impaction surface.
Most PM2.5 measurements used a Harvard impactor (2, 3) with
two size-selective inlets in series, each with a preoiled impactor
plate serving as the impaction surface to reduce the effects of
particle bounce. Each size-selective inlet had a D50 of 2.5 μm at 4
LPM (±10%). A few PM2.5 measurements used a PEM with a
D50 of 2.5 μm at 4 LPM (±10%) and an internal level greased
well serving as the impaction surface. Airflow rates through
the filters were measured at the start and end of each 48-h
measurement period using a calibrated rotameter. Equipment
and flow rates were checked at 24 h and adjusted as needed.
All filters were weighed before and after measurement on a

Mettler Toledo MT5 microbalance at the Harvard School of
Public Health (HSPH) Laboratory, after being conditioned in a
temperature and humidity controlled environment [20.5 ± 0.2 °C,
39 ± 2% relative humidity (RH)] for at least 24 h and statically
discharged via a polonium source. In both pre- and postweighing,
filters were weighed twice; if these two masses were not within
5 μg of one another, they were weighed a third time. The mean of
the two masses within 5 μg was used for calculating concentrations.
After every batch of 10 filters, the zero, span, and linearity of the
balance were checked via a set of class “S” weights. Final filter
weights were adjusted using an air buoyancy correction (4).
Measured concentrations were used only if the pumps operated

for ≥ 85% of the 48-h measurement period and if the average
flow rate was within 15% of the intended rate. These criteria
excluded 10 PM2.5 and 11 PM10 integrated measurements. One
additional PM10 measurement was excluded because of a broken
connection in the airflow system. All PM concentrations were
blank-corrected. The mean weights of blank samples were 2.2
and 4.4 μg, respectively, for PM2.5 and PM10. All filters weighed
well above the limit of detection (calculated as three times the
SD of the blanks), with the lowest filter weight being over 18-
and 23-times larger than the limit of detection for PM2.5 and
PM10, respectively.

Where duplicate measurements were taken, the average of the
two measurements was used for analysis. The mean relative
percent-difference of PM2.5 and PM10 duplicate measurements
were 7% and 5% respectively, each excluding one duplicate
measurement with low flow rate. These values are consistent with
other studies at the Environmental Protection Agency Center for
Ambient Particle Health Effects at HSPH.
Continuous PM. Methods for continuous PM measurements at
rooftop ambient sites are described in detail elsewhere (1). We
measured continuous PM2.5 using SidePak Model AM510 and
DustTrak Model 8520 monitors (TSI Inc.) in household cooking
and living areas, respectively. Both monitors have a built-in laser
photometer that uses a 90° light scattering laser diode to measure
airborne PM2.5 concentration. SidePaks and DustTraks were
operated at 0.8 LPM and used an upstream single or double mini-
PEM as the external size-selective inlet, with an internal level
greased well serving as the impaction surface. Mini-PEMs were
changed at maximum intervals of 48 h, and more frequently if
necessary. All DustTraks and SidePaks were calibrated daily to
a zero filter. DustTrak and SidePak monitors measure PM every
second. Data were recorded at 1-min intervals, with each record
corresponding to the average of the previous 60 measurements.
The internal time maintained by the monitors was periodical-
ly synchronized with an external time source. To ensure data
validity, we excluded continuous data when the instrument mal-
functioned (e.g., laser failure) or when flow rate was low
because of low battery or a folded tube between the inlet and
the instrument.
PM concentrations measured using light scattering are subject

to error, because factory calibrations use specific aerosols whose
characteristics (e.g., shape, size, density, and refractive index) may
differ from those in field studies, and because factors such as RH
affect measurements (5–7). We adjusted continuous PM in a three-
step process. In the first step, we standardized the minute-by-
minute records for the effects of RH, using relationships from
previous studies (5). In the second step, we corrected all minute-by-
minute PM records in each 48-h measurement period using
a correction factor (CF) so that the average of RH-standardized
continuous PM was equal to the integrated gravimetric PM level
over the same period and at the same location. In the final step,
we used a nonparametric regression (locally weighted scatterplot
smoothing), with a 60-min bounding radius, for smoothing the
continuous PM. In the above approach, the first step removes
the effect of RH variation on measured PM within a single day;
the second step ensures that the measurements are corrected
against the gravimetric measurement, which has substantially less
error than nephelometers; and the third step eliminates pertur-
bations sustained for < 10 min but maintains longer-lasting
patterns (8). We used smoothing because it may be possible that
nephelometer measurement error is systematically different at
higher concentrations. The median (interquartile range) of CFs
was 1.00 (0.84–1.19).
We calculated CF directly for continuous PM2.5 in the cooking

areas, where integrated PM2.5 was also measured. Neighborhood
geometric mean of all cooking area CFs was used for cooking
areas where the integrated sample was excluded for the above
reasons or when the duration of cooking area continuous data
were < 85% of the 48-h measurement period. We applied the
cooking area CFs for continuous PM2.5 in the living area of the
same household.
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Household and Neighborhood Socioeconomic Status, Fuel, and
Housing. We used a structured questionnaire to collect data on
number of household members, housing and cooking area char-
acteristics, ownership of assets, fuels and stoves used for domes-
tic and small-commercial cooking, and the presence of smokers
in the house and other combustion sources. We used a Garmin
Etrex GPS unit (Garmin Limited) to record geographic coor-
dinates for each household, which were used to calculate the
average distance between the household and main roads in Arc-
Map 9.3 (ESRI Corp.).
Following previous analyses of household data in developing

countries (9, 10), we measured each household’s socioeconomic
status (SES) using an index based on housing characteristics,
water and waste systems, and ownership of durable assets. To
calculate the SES index based on empirical weights for each asset,
we used principal component analysis of the set of assets recorded
in the questionnaire. Principal component analysis is a statistical
procedure that transforms a number of possibly correlated vari-
ables into a smaller number of uncorrelated variables, the prin-
cipal components (11). We used the first principal component as
the SES index because it is a linear combination of all of the in-
dividual asset variables that explains the maximum variance ac-
ross the households (29% of total variance). The variables used
in calculating the SES index were wall and floor materials, toilet
and bathing facilities, solid and liquid waste-disposal methods,
water source, and ownership of a sewing machine, telephone, cell
phone, refrigerator, radio, television, electric iron, bicycle, mo-
torcycle, or car.
We used a 10% sample of the Ghana 2000 Population and

Housing Census to calculate the proportion of households who
used biomass fuels in the Census Enumeration Area (EA) in
which each study household was located. We also used the
census data to calculate a community SES index for the
household’s EA. The EA SES used data on type and tenure of
dwelling, materials of outer walls, floor, and roof, toilet and
bathing facilities, solid and liquid waste-disposal methods, wa-
ter source, and the number of persons per room and per bed-
room; data on all these variables were available in the Ghana
2000 Population and Housing Census. The PCA was conducted
using data from individual census records (each corresponding
to one household), with household scores averaged to obtain
EA SES.

Meteorological and Weather Variables.We obtained hourly RH and
weather data from a station near the Accra International Airport,
maintained by the National Oceanic and Atmospheric Admin-
istration, United States Department of Commerce. For hours
with missing RH data, we predicted RH using simple linear
models when data were missing for less than 3 h. When more than
3 h of data were missing, we used the average of RH for the same
hour over 5 d before and 5 d after the missing value. We fitted
a cubic spline function to hourly RH to obtain RH for each
minute. We calculated the number of hours with rain in each 48-h
measurement period using variables on present weather and past
weather, which report precipitation for the current (t) and pre-
vious hour (t − 1). If these two variables had missing values, we
used data on precipitation during the preceding 6 h to assign
precipitation status.

Statistical Analysis. In addition to descriptive statistics, we used
regression analysis to examine the association of cooking area PM
with its potential household and neighborhood determinants that
may be proxies for PM sources and for ventilation.We applied the
following regression equation:

Ln
�
PMcooking area

� ¼ β0 þ β1 × household fuelðownÞ
þ β2 × household fuelðsmall− commercialÞ
þ β3 ×EA biomass use
þ β4 × cooking location
þ β5 × household sizeþ β6 × SHS
þ β7 × distance to main roads
þ β8 × precipitationð þ β9 ×LnðPMambientÞÞ
þ ε

where,

PMcooking area: 48-h integrated PM in the cooking area;
Household fuel (own): biomass, nonbiomass;
Household fuel (small-commercial): none, biomass, nonbio-
mass;

EA biomass use: percentage of households using biomass in
the household’s EA;

Cooking location: inside the house, open air, separate cook-
house;

Household size: number of household members;
SHS (secondhand smoke): smokers in the house, no smokers
in the house;

Distance to main roads: weighted average of distances from
the household to main roads;

Precipitation: number of hours with precipitation during the
48-h measurement period; and

PMambient: average of 48-h integrated PM at nontraffic rooftop
sites of the household’s neighborhood in the same measure-
ment period as that of the household.

We repeated our analysis with (model 1) and without (model 2)
PMambient in the regression to reflect the possibilities that neigh-
borhood ambient PM may influence household concentrations
(hence the need to adjust for PMambient) or that in a primarily
biomass-using neighborhood, ambient PM may itself be largely
because of household fuel use (hence a potential overadjustment).
Ventilation parameters other than cooking location were not

included in the model because houses in the study neighborhoods
were naturally ventilated, allowing particles to readily penetrate
in and out the house. PM concentrations were log-transformed to
ensure that the residuals were normally distributed. All analyses
were conduct using the open-source statistical analysis package R
version 2.8.

Comparison with Previous Studies. A study in Dhaka, Bangladesh
(12) reported that higher-income households had lower kitchen
PM10 concentrations, which is consistent with our findings, and
with patterns of fuel use in our study households and neigh-
borhoods. Another study in Accra found higher personal PM
exposure among wood users, who were generally from lower-
income households (13). Prior studies in Delhi, India (14) and
Dhaka, Bangladesh (12) also found that clean fuels were asso-
ciated with lower household PM levels. In Agra, India indoor-to-
ambient ratios for PM2.5 ranged from 0.76 to 1.13 (15), a smaller
but consistent range compared with the 0.44 to 2.87 range in our
study. The differences in the ranges could be because our study
households and neighborhoods, which covered a large range of
SES, had larger variation in fuel use, building design and ma-
terial, and ventilation.

Strength and Limitation. Our study has a number of innovations
and strengths: The study combined geo-referenced data from the
census, household questionnaire, Accra road map, and household
and ambient PM measurements to have uniquely complete data
on pollution and its potential determinants at the household as
well as community levels. The data were from four neighborhoods
that covered the full range of community SES in Accra. Our
continuous data allowed analyzing the temporal patterns of PM.
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Furthermore, we used integrated PM data to correct for the
measurement error of continuous data measured using light
scattering.
The data used in this study also have a number of limitations.

First, it would have been ideal to conduct measurements in a
larger number of households, but this was beyond our resources.
Second, data were collected in different months in the four
neighborhoods. Adjustment for ambient PM in the multivariate
analysis helped overcome macrolevel seasonal differences across
the neighborhoods but it would be ideal to have multiple mea-
surement campaigns in each neighborhood, in different seasons.

Because of lack of data from different seasons, our results should
not be used to estimate the usual or average pollution in these
households. Third, although continuous data helped analyze the
temporal patterns of pollution, PM measured using light scat-
tering is subject to error. Although we systematically applied a CF
to PM data, the steps involved in calculating CFs introduce ad-
ditional uncertainty, especially for the living area continuous PM
data, which was corrected using the cooking area CF. These
strengths and limitations should inform the design of future re-
search on the determinants of household pollution in developing
country cities.
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Fig. S1. Study neighborhoods, ambient measurement sites, and study households. We recorded biomass fuel sales locations through a neighborhood-wide census.
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Fig. S2. Correlation coefficients of continuous PM2.5 measurements in ambient, cooking area, and living area, stratified by household fuel use. Each corre-
lation coefficient is calculated between minute-by-minute measurements over a 48-h measurement period for one household. The number of households in
each group is n. In each plot, the middle line shows the median, and the bottom and top of the box show the 25th and 75th percentiles of data.

Zhou et al. www.pnas.org/cgi/content/short/1019183108 4 of 6

www.pnas.org/cgi/content/short/1019183108


Table S1. Summary statistics for fuel, housing, and other characteristics of study households, by
neighborhood

JT AD NM EL

Number of households in the analysis 21 20 21 18
Average number of residents per household 8.6 4.4 6.6 6.7
Average distance to main roads (m) 42 78 100 250
Percent of all households (%)
Uses biomass fuel for household’s own cooking 95 50 86 22
Fuel for small-commercial cooking

No small-commercial cooking 55 75 71 83
Biomass 45 15 29 6
Other 0 10 0 11

Dwelling
Compound room 90 65 100 6
Separate house 10 30 0 89
Other 0 5 0 6

Cooking Area
Inside the house 10 40 10 83
Separate cookhouse 14 15 19 0
Open air 76 45 71 17

Source of drinking water
Public tap 33 5 38 0
Piped into yard/plot 29 5 29 6
Sachet water 19 60 5 22
Piped into dwelling 19 25 29 33
Bottled water 0 5 0 39

Type of toilet
Bucket/pan 10 10 10 0
Traditional toilet 86 10 67 11
Ventilated improved pit latrine 5 0 14 0
Flush toilet 0 80 10 89

Bathing facility
Private open cubicle 0 0 0 6
Shared bathroom 67 50 48 17
Own bathroom 33 50 52 78

Solid waste disposal method
Solid waste is collected 19 100 19 61
Burnt, public or other dump, buried, and other 81 0 90 39

Liquid waste disposal method
Sewage system 0 0 0 61
Thrown on street, gutter, or compound, and other 100 100 100 39

Presence of smokers in the household 0 0 10 10
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Table S2. Details of PM data collection by neighborhood

Neighborhood Number of samples

JT
48-h integrated PM2.5 measurements in the cooking area* 20
48-h integrated PM10 measurements in the cooking area* 20
Household-days of continuous PM2.5 data in the cooking area 25
Household-days of continuous PM2.5 data in the living area 38

AD
48-h integrated PM2.5 measurements in the cooking area* 19
48-h integrated PM10 measurements in the cooking area* 19
Household-days of continuous PM2.5 data in the cooking area 35
Household-days of continuous PM2.5 data in the living area 35

NM
48-h integrated PM2.5 measurements in the cooking area* 25
48-h integrated PM10 measurements in the cooking area* 26
Household-days of continuous PM2.5 data in the cooking area 53
Household-days of continuous PM2.5 data in the living area 37

EL
48-h integrated PM2.5 measurements in the cooking area* 16
48-h integrated PM10 measurements in the cooking area* 14
Household-days of continuous PM2.5 data in the cooking area 33
Household-days of continuous PM2.5 data in the living area 34

*Number of valid samples, excluding duplicates.
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