Bane

/

\

=y

Supporting Information

Aviran et al. 10.1073/pnas.1106541108

SI Text

Convexity and Simplification of the Optimization Problems. Before
we start, we note that we replace n’ with n throughout this section
for notational convenience. To simplify the presentation, we also
treat the third optimization subproblem first.

In the third optimization problem, we fix I" and ¢ at their most
recent estimates, ['* and c*, respectively, and seek a probability
distribution ® that maximizes log Z(0,I'* ,c¢*). We call this pro-
blem P3 and establish its strong convexity in the following lemma.

Lemma 1. P3 is a feasible convex optimization problem.

Proof: 1t is easy to see that maximizing log Z(©.I'* c*
equivalent to maximizing

= ZXk {c*( Z 6, - 1) +log(e<"% — (1 —y}))|. [S1]
k=1

I=k+1

) over O is

We now show that % (@) is strictly concave in © on its feasible
convex domain Dy = {(6.....0,)|0 > Flog(1 —y}) V1<
k <n}. This can be seen from Eq. S1 by observing that % (@)
is a sum of a linear function of ® and of log functions, where each
logarithm depends only on one 6. For convenience, we denote
the latter functions by f}(©) = f4(6x) = log(e“"% — (1 — y¢)) and

infer their strict concavity from the sign of f}(6;) =
(1) (F )20 O
% < 0. We also wish to stress that %(©)’s domain

includes negative 6;’s because log(1 — ) < log(1), with a strict
inequality for at least one k. Finally, the convexity and feasibility
of P3 follow directly from the linearity of the imposed equality
and inequality constraints (1).

Next, we provide the complete details of the proof of
Theorem 3 in the main text.

Proof of Theorem 3: For a feasible convex optimization problem,
the Karush-Kuhn-Tucker (KKT) constraints provide necessary
and sufficient conditions on its unique solution (1). From
Lemma 1’s proof, it follows that the KKT conditions for P3 take
the form

>0, =20, XOr=0 k=1..n,
ana* _ (s2]
k —
k=1
0F (O
a(e )H,j—u*:o, k=1,...n [S3]
k

where ©* is the optimal solution, the 4;’s and v* are the KKT
multipliers that solve Eqgs. S2 and S3, and % (@) is defined in
Lemma 1’s proof. Eq. S3 can then be explicitly written as
k=1
c* X; +
R

FAr =0, 1<k<n

(1 =rf)e%
[S4]

Clearly, if the solution of the original, less-constrained problem is
nonnegative, then it is also the sought solution and satisfies the
KKT conditions with 4; = 0 for all k.
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Now, assume without loss of generality (w.Lo.g.) that X; > 0.
Consider the case where ;7 > 0, implying that 47 = 0 and that the
following equation must hold:

k-1
c* ZX,. + X1 (0F) = v, [S5]

i=1

where we use the previously introduced notation f;(6) =

log(e™? — (1 — yf)) and where f (9) stands for f(6)’s derivative.

The left-hand side of Eq. S5 consists of a nonnegative constant

and of a strictly monotonously decreasing function of 6}, as

follows from Lemma 1’s proof and as illustrated in Fig. S1A4.

For 67 >0, f;.(6f) is bounded by [f} (o) f}.(0)] = [c*,;—:], and,
k

¢* (T X, +29). one can

k
solve Eq. S5 for a positive ;. The solution then satisfies

I/—Czle
*cz

However, if v* exceeds the value of the right boundary point of
the interval [c*,%), then 67 > 0 is impossible, and thus we set
k
0f =0and ¥ =v* —c* (T X, +)ny) > 0. Note that if y =0,
k
f1.(6%) is unbounded over R* and so any v* > ¢* Y | X; yields
a positive solution. Also note that the explicit expression for ©
that is computed by Algorithm 1 is obtained when plugging
* =¢ Y X; into Eq. S6, with ¢* = ¢ and 7} =
For notational convenience, we introduce the constants
=c* (XK X; —|—%"), 1 <k<n, and obtain the following
k

. .
relations between e¢

therefore, given v* € (c*

*0*

e % =1-yr) [S6]

% and v*:
1 if ¥ >
v*—c* k—lX
i k
(1—]/;)m if C* Zilei <L/* <ak. [S7]
i=1
if o* < c* k
if v* <c Zile
Note that when v* < ¢* Y | X, there is no feasible solution to
the KKT conditions because the 6 that solves Eq. S5 lies outside
of #(0)’s domain. As will become clear later, this regime is

irrelevant to the problem’s solution. Hence, we restrict attention
to v* > c* YX | X; and simplify Eq. S7 to

]

Next, we seek v* such that !, 6 =1, or alternatively, that
e Zi % = ¢, Using Eq. S8, we can write

e =

undefined

% = max{l,(l ) [S8]

k-1

v —c X; o gr

Hmax{ 1 - }/k o %k } = eC Zkﬂ O = ec*. [S9]
—c*

The product in Eq. S9 forms a piecewise continuous and mono-

tonously decreasing function of v*, with breakpoints at the finite
a;’s. To observe these properties, we assume w.l.o.g. that all a’s
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are finite and inspect the function’s behavior when starting at
v, = max, <, {a} and then gradually decreasing v*. Clearly,
the product yields 1 at v}, but once v* < v}, it increases due
to at least one site k, for which v* < ¢, and which contributes
« ko1
(1 —y,‘:)%%&> 1 to the total product. As we continue
= 3.0 X;
decreasing v*, additional terms increase their contribution to
more than 1, with transitions taking place at the «;’s. Moreover,
each of these “flexible” terms forms a strictly monotonously
decreasing function of v* (once it exceeds 1) and so it increases
its contribution as v* decreases. Importantly, each increasing
term reflects a continuous increase in its corresponding 6. This
way, the growth of the total product facilitates the expansion of
certain ¢;’s while keeping others fixed at 0. Once }}_, 0 =1,
Eq. S9 holds and a unique assignment for ®* is determined as

follows: Suppose the intersection occurs at o < v, < a,,, then
-ix
0f = 0 for all k such that o < o, and 6} = [log%—i—

log(l —7})] otherwise. By replacing YX ,X; with >'X,—

il X; we obtain the expression for ¢} in Theorem 3 in the
main text. At this point, we wish to note that this solution tech-
nique is known as water filling (1, 2), and thus we call the product
in Eq. S9 the water-filling function. The technique is illustrated in
Fig. S1B and is visualized as the flooding of a region with varying
surface levels up to a constant amount of water.

Finally, we argued earlier that the domain v* < c¢* Y% X; is
irrelevant to the solution. We also mentioned that the formula for
the reactivities that is computed by Algorithm 1 forms a special
case of Eq. S6 when v* = ¢* Y"1 X;. Now, if all estimated reac-
tivities are nonnegative when v* = c* Y"' X;, then v* is the
desired threshold. However, if some reactivities are negative,
then the sum of the positive ones must exceed 1, and hence v*
should be increased to more than c* f’jll X, until the sum
reaches 1. This implies that v* > ¢* Y X; > ¢* ¥ | X; Vk and
also justifies setting 67 = 0 whenever X = 0, because Eq. S3 now
takes the form c* Y X; + Af = v* and must hold with 4} > 0.

The second subproblem, hereafter called P2, entails the max-
imization of log £(©*,I',c*) when both ®* and c* are kept fixed
and when I lies in the unit hypercube [0,1]". P2’s strong convexity
is straightforward, as shown below.

Lemma 2. P2 is a convex optimization problem.

Proof:From the expression for the likelihood function in the main
text we have

k-1
log Z(©*.I'c*) Z Yy {Z log(1 —7,) + logyk]
k=1 i=1

+ iXk [c*( i o — 1) +k2110g(1 -7)
k=1 i=1

I=k+1

T log(e”% — 1 +yk>} K+ Yoo)

X Z log(1 —7;) = c* X441, [S10]
i=1

which consists of constants and of a positively weighted sum of

logarithms of affine functions of I'. It is well known that convexity

is preserved under affine transformation and that logarithms are

strictly concave (1), thus establishing the log-likelihood’s concav-

ity. This fact, together with the imposed box constraints, com-

pletes the proof.
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We are now in a position to prove Theorem 2 in the main text.

Proof of Theorem 2: A key observation here is that P2 can be trans-
formed into n independent unconstrained optimization problems,
each in one variable. This is because log & (©*,I',c*) is separable
in yq,...,y, as follows:

n n+1
log Z(®@*.I'c*) 2[(2 X'+Yi)) log(1 = 7x) + Yy log i
k=1 i=k+1
+ X log(e" % — 1 +m)} +C. [S11]
where C is a constant. For simplicity, we introduce the constants
Sk = Yl (X; +Y;) and functions
b(r) =

Silog(1 = yx) + Yy logy + Xy log(e” % — 1+ ;)

[S12]

for 1 <k < n,such that log Z(@*.I',c*) = C + X7, I (k). Now,
not only each function can be optimized separately, but the box
constraints can be removed as well, as long as Y, > 0 or X; >0
jointly with 67 = 0. To see this, note that S; >Y,,, >0 and
hence log(1 —y;) serves as a natural barrier that upper bounds
I(7x)’s domain at 1. Similarly, Y, >0 (or X, >0, 6} =0)
imposes zero as a lower bound via logy,. Optimization in the
absence of the logy, term is also straightforward, as ex-
plained below.
Assume w.lLo.g. that XY, .0; > 0 and consider setting

Sk Yy Xy

I =- —t

fr) == o e % -1+
which reduces to a quadratic equation when y, & {0,1,1 —e<"% }
(recall that e“"% > 1). [ (y,)’s concavity asserts that the equation’s
solution (if it exists) corresponds to its global maximum. Now,
I, (7x) is well-defined and continuous over (0, 1) and approaches
oo near 0 and —oo near 1. Therefore, it must cross zero inside the
unit interval at

L 1
e T, 1 Y+ S

=0, [S13]

{Xk + Y = Tp(Sk + Y)

+ \/[Xk + Y = Ti(Sk + Y +4TeY (X + Yy + S) |-

[S14]
where T) = ¢’ % — 1 > 0 and where
n+l
X+ Y+ 8= Y (X +Yi) = Sy [S15]

i=k

stands for the total count of fragments that contain nucleotide &.
When Y, = 0 but §; > 0, the solution simplifies to y; = X)’?,jgfk’
but /;(y)’s domain is now extended into R~ with [} (y;) — oo near
X T"S“ ~t} in this case. The

last case of interest is when 6 =0 (1.e., Tk =0), and then

Xk+Yk . . e . A
yk Yoiviis > 0, which generalizes the initial estimate j;, =

—T.. For this reason, we set y; = max{0,

Z"“ v, to data that were aggregated from both channels.

The first optimization problem entails setting (0,I') = (@*,I')
and seeking a positive ¢ that maximizes log & (©*,I'* c). We refer
to this problem as P1 and establish its strong convexity next.

Lemma 3. P1 is a convex optimization problem.

Proof: The concavity of log Z(©*,I'* c) with respect to ¢ can be
seen by following the same derivation as in Lemma 1. Specifically,
it suffices to maximize
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#(c) = [S16]

where F(©*I'*,c) stands for F(0® = ©*), with ¢ =c* (see
Eq. S1). One can readily see that %#(c) consists of a sum of
a linear function of ¢ and of the functions #;(c)=
log(e% — (1 —yf)) for all k for which 6} # 0. Because each of
the latter functions is symmetric with respect to 6, and to c, their
second-order derivatives with respect to ¢ are all negative (see
Lemma 1), and so is the derivative of their positively weighted
sum. This establishes % (c)’s concavity. At this point, it is worth
noting that #(c)’s domain takes the form 24 = {c|c > ¢} },
where ¢ = max;: ,9*#){ log(1—yy)}. We remind the reader

that log £(©.I'c) w1th Y, >0 constrains the y,’s to
0 < 1 -y, < 1,and therefore ¢, < Oifand onlyif y; > 0 for each
k for which 8} # 0. In addition, because the logarithmic terms are
not well-defined whenever 6} =y =0, the function pertains
only to those positions where 6 #0 or y; # 0. Importantly,
we do not expect to encounter positions where 8 = y; = 0. This
is because when 67 = 0, the kth term in problem P2 becomes
logyy, thus ensuring y; > 0 whenever X # 0. If X =0, then
we have Y, # 0 (recall that all double-zero positions are excluded
from optimization), in which case the term Y logy} serves the
same purpose. Finally, note that the constraint ¢ > 0 does not
comply with the standard (stricter) definition of a convex optimi-
zation problem, which involves weak inequalities, i.e., ¢ > 0 (1).
Yet, this subtlety is accounted for in the next lemma, and we refer
to P1 as a convex optimization problem in the broader sense.

FO I*c)—cX,,

Problem P1 does not pose a significant computational chal-
lenge as it involves one variable. Yet, its solution can be further
simplified by relaxing the constraint ¢ > 0. This gives rise to
an unconstrained optimization problem, where a concave %(c)
is maximized over the semibounded interval 9. Because D
may contain negative values, the relaxation might result in a ne-
gative maximizing argument. The following lemma shows that
a maximum for the unconstrained problem is indeed attained
within its semibounded domain and that it can be readily used
to infer P1’s solution.

Lemma 4. F(c) attains a unique maximum over its domain
Doy = {c|c > cp}. If arg max #(c) < 0, then problem PI is infea-
sible. Otherwise, arg max #(c) is also the solution of PI.

Proof: We first demonstrate that #(c) attains a maximum over
D4 by showing that its derivative crosses zero inside the domain.
The derivative takes the form

*

o
Xk[ or —_C*—1 ~X,., [S17]
Z _kzjl — (1 =yf)e™%

and is well-defined and continuous over 2. When ¢ approaches

or .
7/:7[9* — oo for at least one posi-
I=(1=yg)e "k

tion k with 6 # 0, implying that " (c) > 0 for sufficiently small ¢

¢y, from the right, we have

values. In contrast, when ¢ — oo, we have o

1=(1=y})e
each k with 7 > 0 (and a zero-term otherwise), and therefore
Z'(c)—> r le Sre60r—1)—X,.,. The expression on the
rlght hand side must be negative, because Y}, 6 < 1 with strict
inequality for some k’s and because we expect to have X,,,; >0
(see Modeling Chemical Modification in the main text for reason-
ing). It now follows from the intermediate value theorem that
' (c*) = 0 for some c* € Dy, which is where the unique max-
imum is located. Finally, sign(c*) determines whether c¢* solves

— O for

—ch*
“k
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P1 as well. In case it is negative, we have #'(c) < #(0) for all
¢ >0, and because #(c) monotonously decreases over R* P1
is infeasible. Otherwise, c* maximizes #(c) over R* and is P1’s
sought solution.

Concavity of the log-Likelihood in the Entire Parameter Space.
Although the decomposition of the global optimization problem
into local optimization steps lends itself to an efficient semiana-
Iytic solution, it is also of interest to investigate the function’s con-
cavity with respect to the entire coordinate system. Such global
concavity has two implications: first, every local maximum is also
global, and thus Algorithm 2 should converge to a global maxi-
mum even when initialized at a single starting point. Second, it
facilitates the solution of the entire optimization problem using
numerical interior-point methods. Yet, it is not obvious that the
latter approach is advantageous over Algorithm 2, as it might be
more computationally intensive and/or yield less accurate solu-
tions. Hence, even if the function is globally concave, the perfor-
mance of interior-point methods needs to be carefully examined
and compared to that of Algorithm 2’s.

Before we study log #(0©,I',c) as a function of all parameters,
we set ¢ = ¢* and investigate its concavity with respect to (0,I).
We can further simplify analysis by following the lines of Theo-
rem 2’s proof and observing that log &(©,I',c*) is separable in the
pairwise variables (6;,y,) as follows:

n
log Z(0.I'c*) Z (O.yx) +L(O®) +C. [S18]

Here, L(®) represents a linear function of ®, whereas C and
I (6y,y) pertain to the constant and functions that were intro-
duced in Theorem 2’s proof, respectively. Specifically,

I (Oyi) = Sk log(1 = yi) + Yilogyy + Xy log(e % — 1 + ),
[S19]
where S, = ?Ile(Xi +Y;). Because log Z(0,I',c*) is concave

in (®,I) if and only if [, (6.yx) is concave in (6,y,) for all k, it
suffices to investigate the properties of the two-dimensional func-
tion [, (6x.yx ). We start by showing that its right-hand term, that is,

Fi(Bpv) = log(e” % — (1 =),

is not concave in (6,yx). Before we proceed, we stress that
fi(Bryr)’s domain, consisting of all (6,y,) such that y;
> 1 —e"%, does not form a convex set. This can be seen from
the fact that the domain consists of the epigraph of the strictly
concave function y;(6;) = 1 —e"%. In light of the importance
of a domain’s convexity in determining a function’s concavity
(1), we artificially restrict the function’s domain to the following
convex subset of the original domain, which contains the entire
feasible parameter space:

[S20]

DS = {(Or1r): 056, <10<y, < 1}

Lemma 5. The function fi:R?>— R, with domain DS =
{(Oe76):0< 6, < 10=<y, <1} and gven by fi(Orri)=
log(e€ % — (1 —yy)), is not concave in (Oy.y;).

Proof: Because f; (6.y,) is continuous and twice differentiable in
its domain, its concavity can be inferred from the negative semi-
definiteness of its Hessian on the interior of 2&. The Hessian is
given by
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e 2fee (1 - ) e
kai_[ec k_(l_Yk)] 1

) . [s21]

and when multiplied by V' = (x,y) from both sides we obtain

VH; VT = —[e"% — (1 — y)] 2 [c*?e % (1 =y x> + 2
+ 2c* e thxy] [S22]
=% — (1 = )] 2 [(c*e Ohx +y)?
+c*2e (1 =y — e %N, [S23]

Consider (x,y) such thatx # 0 and c*e"%x +y = 0, in which case

VH VT = —[e"% — (1 — )] 2c*%e 0 (1 — . — e % x> [S24]

= [ % — (1 — yp)]'c*2e 0x? > 0, [S25]
where the positive sign follows from the fact that f; (0;,7x) is
defined only when e“"% — (1 —y,) >0 and because c* > 0.
Eq. 825 implies that Hy, is not negative semidefinite and hence
fi(6k.7k) is not concave. Note that Hy, is not positive semidefinite
as well, because a choice of V' = (0,y) with y > 0 yields a negative
product in Eq. S22. Therefore, f}(0y,yx) is neither convex nor
concave on the domain of interest.

Importantly, the fact that f;(6;,rx) is not concave does not
imply that [ (6.7x) = Sk log(1 = yi) + Y logyi + Xufy (Or.vx) is
not concave as well, because the first two terms are strictly
concave functions. In what follows, we attempt to investigate
L (Or,yx)’s concavity by examining its Hessian, which takes the
form

Xkc*le(*“’k(l ) Xkc*e“*ek
= | %P ()P
i, = Xyc*e M [S26]
™ e~ (1)
where M = o j((kl P + (I_S}fk)z + % ‘We now exploit the fact that

H,, is two-dimensional and hence its determinant’s sign is indi-
cative of its definiteness. If the sign is negative, then the two
eigenvalues must be of different signs and the matrix is neither
positive nor negative semidefinite, or equivalently, the function is
neither concave nor convex. The determinant is given by

X, c*2 C* O X S
det H,, = c*0) " 2 [ 0, £ + 2k
% = (T=y )] L% = (1 =) 1-rk
Y. (1 -
A .
Vi
and if X; > 0 then
sign(detH, ) = sign( — X + Sk Yi(l - }’k)>.
e —(1=-y) =1 r:
[S28]

Recall that S, > 0 and let us assume for simplicity that X and Y
are also positive. Recall also that we are concerned with all the
points in P§’s interior where 0 < 6, <1 and 0 <y, < 1. We
thus wish to explore the existence of a feasible point for which
the expression in Eq. S28 assumes a negative value. Although this
expression reduces to a cubic equation in y;, finding its real root

analytically is intractable. Instead, we observe that W de-
Yk

pends on both 6, and y;, whereas the other two terms depend
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only on y,. Additionally, this term increases in magnitude as

7¢ = 0 and as e"% — 1. However, we also have w - o0
k

when y; — 0 and lf—*n — oo when y; — 1. This means that for

any given c*6, value needs to offset an increasing

#
7 e~ (1)
(and unbounded) positive term at both limits of the interval
0 <y, < 1. It is therefore not obvious whether there exist 6,

; Xk Sk YA(l —7k)
and y, for which eC*ﬂk—(l—yk) T+ T < 0.
Instead, we resort to considering the llmltmg case where 6, =
0 (on 2$’s boundary), because this is where % is maxi-
Vi

mized for each y,. Here, we can test whether the simplified
condition
-X, S Y, (1-
ky Ok k( . Yk) <0
ve o L=k Yk

[S29]

holds for some 0 < y, < 1. By converting the latter condition into
the equivalent inequality

(Sk +Yi +X)rg = @Yy + Xi)y + Yy <0, [S30]
it is easy to show that it is satisfied within some subinterval of
(0, 1), provided that

X2 > 4Y, Sy [S31]
This is because its left-hand side is positive at y, € {0,1} and
its minimum is attained at 0 < j; :% 1. Now, if

the expression’s discriminant is positive, it must cross zero twice
inside (0, 1) and attain negative values between the two intersec-
tion points. Finally, constraining the discriminant in this manner
yields inequality S31. When S31 is satisfied, we can choose a suf-

ficiently small ¢*6; such that "% — 1 < ¢ and & ~$
Tk
This, in turn, guarantees that *0_7)“ + 1Sk + Y"“ %) < () for
h—(1p) | 1
the chosen values.
When S31 does not hold, it follows that W < % <
Tk

Sy Yllord) (1 2 or that sign(det H; ) > 0. Notably, a positive deter-

1=7k
minant 1mphes that [, (6;,yx) is either convex or concave, but
because f; (6r.7x) is neither concave nor convex (see the proof
of Lemma 5) and log(1 —y;) and logy, are strictly concave,
I (0k,y,) must also be concave in this case. Finally, when S31
does not hold for every 1 <k <n, we can conclude that
log #(©.I',c*) is concave in (O,I).

Our analysis thus suggests that the global concavity of
log Z(©,I',c*) is data-dependent, as captured by the condition
in S31. In light of this condition, we consider the case where
Y = 0 but X; > 0, which, in our experience, is commonly ob-
served, albeit for very few positions. For such positions, S31
clearly holds, thereby eliminating the log-likelihood’s global
concavity. Although one may arbitrarily set Y, = 1 for such posi-
tions, S31 may or may not be satisfied following such correction,
depending on the corresponding values of X and Sj.

As final remarks, our analysis considered the domain 28 =
{(Or,7x): 0 <0, £1,0 Ly, < 1}, but, in fact, optimization takes
place over a convex subset of this domain, in which }7_, 6, = 1.
It is possible that under a fixed-sum restriction, log #(0,I',c*)
exhibits global concavity. However, analysis of the type we con-
ducted above does not apply in this case due to two reasons: (i)
only directions V' = (vy,...,v,) such that }%_, v, = 0 are feasible
under the additional restriction, and (if) one cannot leverage on
the separability of log #(0,I',c*) into two-dimensional functions,
as these are now linked by the fixed-sum constraint. Therefore,
such analysis exceeds the scope of this work and is a topic for
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future research. In addition, we did not include analysis of con-
cavity in (0©,I',c) (i.e., when ¢ is also allowed to vary), because lack
of concavity in a lower dimension implies the lack of it in the
entire coordinate system.

Implementation Details. The following technical detail pertains to
the analysis procedure:

1. Each nucleotide included in the molecular construct probed
by the SHAPE (selective 2’-hydroxyl acylation analyzed by
primer extension) experiment should be associated with reac-
tivity and natural drop-off parameters. This is because nucleo-
tides outside of the studied domain, such as those found in the
structure cassette and bar codes, may react with the agent.
This effectively increases n to a few tens more than the length
of the investigated RNA strand.

Below we provide additional details regarding efficient imple-
mentation of our proposed approach to numerical maximum-
likelihood (ML) estimation. Our goal in pointing these out is
twofold: reducing running time and facilitating the usage of
accessible, general-purpose, optimization software.

1. The implementation of the water-filling (WF) routine in
problem P3 can be simplified by incorporating the following
observations:

* Before calling the WF routine at each iteration, it is worthwhile
testing whether the explicit solution (i.e., Algorithm 1’s result)
is valid. This is because it is possible that a feasible solution
becomes achievable following the updates made to ¢* and I"™*.
However, from a run-time perspective, the benefits are negli-
gible because the entire WF step is computationally unde-
manding. Note that alternatively, one can sort all ¢;’s and
verify whether any of them is smaller than ¢* "' X;. Each
a <c* Z"“X corresponds to a negative entry.

* It suffices to evaluate the WF function only at the breakpoints,
and in fact, one needs only evaluate it for a subset of them. This
is because the points can be sorted in increasing order such that
the function monotonously decreases as we progress in the
sorted list. One can start evaluating at the first o, that is greater
than v* =c* Y X;, at which point, all negative entries
(whose @;’s are smaller than ¢* Y X;) are set to zero. As
we progress along the evaluation pomts additional 6,’s are
being zeroed. Once e is crossed, evaluation is stopped.

* Such evaluation procedure also identifies the specific interval
where intersection takes place. This allows one to narrow down
the numerical search to this interval.

* Since the WF function is continuous, standard root-finding
algorithms that do not require any derivative information
(e.g., Matlab’s fzero routine) can be used to efficiently perform
the search.

* The analytical expression for the WF function

* _ ¢ le
Hmax{ 1_7’k = C%/( ’}_ec

can be vastly simplified by observing that for any two consecu-
tive nonzero terms, 6y and 6 ,, the kth denominator and the
(k + 1)th numerator cancel out and thereby decrease the de-
gree of the polynomials in both the numerator and denomina-
tor. Hence, every run of consecutive nonzero ;s yields an

: (V= X X))
expression of the type (1 —y/)(1 _m)(v*—c*iﬂ;:&)’ where /

is the smallest index in the run and m is the largest. The runs
should be updated at every breakpoint, but allow one to main-
tain relatively low complexity of function evaluation.

* Positions for which y7 = 0 should not pose a numerical pro-
blem because their a;’s will end up at the bottom of the sorted

[S32]
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breakpoint list, and water filling should be completed before
reaching them.

* The complexity of the WF routine is quadratic in n as a
worst-case scenario. This is because the number of breakpoints
where the function is in fact evaluated is less than », and if the
data are of reasonable quality, this number is expected to be
significantly less than n. At each evaluation point, we need to
compute at most n factors as well as their product.

2. Problem P1 also does not require any specialized convex or
constrained-optimization software. Based on Lemmas 3 and 4,
we used a general-purpose unconstrained optimization rou-
tine to find the unique optimum of the relaxed problem. Lem-
ma 4 also informs us that problem P1 may not always be
feasible and that its feasibility can be easily checked by testing

for the sign of #7(0) = X | Xi[X)ry) OF + %— 1] =-X,41-

In fact, we can av01d solving the relaxed problem once we
observe that #”(0) < 0. Such observation suggests that the
current combination of ®* and I'* estimates does not make
sense and could allude to problems in the dataset. However,
it is also possible that the iterative routine is converging to
a local optimum that is different from the global one. In an
attempt to address such possibility and find another local
minimum, we set ¢ = 1 and continue to the next iteration.

Robustness Analysis Details. Robustness of estimates with respect to
sequencing depth. Estimation accuracy at different sequencing
depths was assessed by sampling our dataset (without replace-
ment) to create smaller datasets, which were then analyzed using
Algorithms 1 and 2. The sampling was done by randomly permut-
ing the list of observed fragments and then recording the first m
fragment lengths, where m is the subset size. This process was
repeated 200 times per each sequencing depth (i.e., subset size),
in order to assess the average performance and the variation
around it. Accuracy was measured as the fraction of sites that
were assigned reactivities within 15% of the full-dataset estimate,
as depicted in Fig. S2. In addition, we verified that the estimated
reactivity profile for smaller datasets still retains the main fea-
tures of the full-dataset profile (see Fig. S3). We performed this
analysis for both the RNase P and the pT181 molecules and
observed similar size-dependence characteristics.

Sensitivity to approximation of repeated modification per site. To
study the effects of the assumed approximation on estimation
accuracy, we simulated many model scenarios in conjunction with
the modified sites being sampled without replacement. This is
in contrast to sampling with replacement, which amounts to
the approximation we made when deriving the model-induced
fragment length distribution. Because it is difficult to derive an
explicit form for the induced fragment length distribution in this
case (note that we accommodated any possible form of ©), we
used Monte Carlo simulations to estimate it to high accuracy.
In these simulations, we set a maximum of seven modifications,
because we used Poisson rates ranging from ¢ = 0.25 to ¢ = 2,
and the Poisson-induced probabilities of having eight or more
exposures are negligible for ¢ = 2. Per each number of modifica-
tions i, we simulated successive drawings of i modified sites, while
revising the sampling distribution after each draw accordingly.
This sequential drawing was repeated 10° times to obtain an
estimate of the probability of encountering the first adduct at
site k given that there were i exposures. These estimates were
then summarized over all considered numbers of modifications.
For simplicity, we disregarded natural drop-off effects and then
recovered the estimated reactivities from the estimated empirical
length distribution, using Algorithm 1’s formula. We then as-
sessed the scheme’s accuracy by computing the fraction of sites
that were assigned reactivities within 10%, 5%, and 1% of the
true reactivity. Intervals of 15% around the true ® were also con-
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sidered, but they consistently yielded 100% hits, which is indica-
tive of overall low sensitivity to the approximation and is also the
reason why we decreased the resolution of our accuracy measure.

We tested a variety of model scenarios. First, we assumed
that © is uniform and changed the Poisson rate within the range
¢ = 0.25-2. We also considered two uniform distributions: one
with n = 10 reactive sites and one with n = 50 reactive sites.
Table S1 shows that accuracy improves with decreasing modifica-
tion rate and with increasing molecule size (more precisely, with
increasing number of reactive sites). This is expected, because, in
general, the statistics of sampling with and without replacement
become similar when the number of sites to draw from is signifi-
cantly larger than the number of draws (i.e., modifications). Sec-
ond, for a uniform ®, we varied n while keeping the rate fixed at
¢ = 1 and at ¢ = 2. One can see the same trend, where increased
lengths lead to lower sensitivity, and that high quality is achieved
for molecules with 40 or more reactive sites, a scenario which,
in our experience, is realistic. Third, we considered four other ®
distributions, as follows: A decreasing exponential and an increas-
ing exponential were chosen as extreme examples of unbalanced
distributions, although we do not think they are representative of
realistic reactivity profiles as these typically display some form
of symmetry due to base pairing. A decreasing exponential of
length n = 50 takes the form a x 0.2 X (0.9)’ (a is a normalization
contant), starting at approximately 0.1 and reaching very close
to zero at i = 50, where the increasing exponential is its flipped
version. We also generated two profiles that reflect our under-
standing of the crude form of a single hairpin (» = 20) and a con-
catenation of two hairpins (n = 50). It can be seen from Table S1
that the model had low sensitivity to the approximation under the
first three distributions, whereas estimation was less accurate in
the single hairpin case.

Robustness of estimates under different model distributions. We
tested estimation quality under different model parameters by
simulating a total of 5 million draws from the induced fragment
length distributions in the (+) and (—) channels, and then
processing the counts with Algorithms 1 and 2. We repeated this
process 500 times. Here, we considered the average fraction of
hits at resolutions of 15%, 10%, and 5% of the true © as well as
the standard deviation around the average (reported in Table S2).
We also computed the standard deviation of the estimated reac-
tivity per site. The standard deviation (per site and per interval)
was negligible is all cases considered. We first assumed that y;, =
0.01 for all k and simulated the model for the five ® distributions
mentioned in the previous subsection as well as for a uniform, a
decreasing exponential, and an increasing exponential, all of size
n = 10. Subsequently, we relaxed the fixed-I" assumption and

1. Boyd S, Vandenberghe L (2004) Convex Optimization. (Cambridge Univ Press,
Cambridge, UK).

2. Cover TM, Thomas JA (2006) Elements of Information Theory. (John Wiley, Hoboken,
NJ), 2nd Ed.
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added spikes of magnitude 0.15 on top of the y, = 0.01 back-
ground. The spike magnitude was chosen based on spikes we
observed in the control experiments of the RNase P and the
pT181 molecules. We tested the effects of two and four such
spikes (distributed evenly across the molecule) when @ is uniform
and when O represents two concatenated hairpins. The results are
summarized in Table S2.

Read Alignment Details. Reads for reverse transcriptase (RT)
fragments were first split into 1M7-treated and untreated pools
by examining the 4 nucleotide handle sequence on the 5’ end of
the read generated from the 3’ end of each RNA probed in the
experiment. Reads with an RRRY handle identified (+) frag-
ments and those with YYYR identified (—) fragments. This han-
dle was then trimmed from each read to allow alignment of the
reads to probed RNAs. Reads were then trimmed for A_adap-
ter_b and A_adapter_t using the FASTX toolkit, because RT pro-
ducts shorter than the length of a sequencing read will produce
reads with adapter at their 3’ ends.

Paired reads were optimally aligned to the probed RNAs using
Bowtie 0.12.8 (3) with the parameters (—best X 2000 y), and
allowing no mismatches in the alignments with parameters (-v 0).
Bowtie suppressed alignments for reads that mapped ambigu-
ously to the probed RNAs (-m 1), though because the bar code
in each read identified each read with its target RNA and align-
ments were required to be perfect, this step was not strictly ne-
cessary. The 3’ end of each fragment alignment (toward the 5’
end of the probed RNA) corresponds to the point at which RT
stopped. Two counters (one for the 1M7 condition and one for
the control condition) at each position of each probed RNA
position were used to track RT stopping points. The (+) counter
for a probed RNA at position i was incremented when a fragment
from the (+) pool aligned to the RNA starting at position (i + 1)
and ending at the RNAs 3’ end. The (—) counter was incremen-
ted for (—) pool fragment alignments. These RT-stop counts were
then used to calculate maximum likelihood reactivities.

Source Code. Source code to implement read mapping and
ML estimation can be found at http://bio.math.berkeley.edu/
SHAPE-Seq/ as either a .tar.gz or .zip file. After unpacking with
the command tar -xzvf Aviran_Trapnell_ SHAPE-Seq
analysis_code_PNAS_201l.tar.gz Or unzip Aviran_
Trapnell_SHAPE-Seq analysis_code_PNAS_2011.zip
a directory called spats-0.0.1 will be created. Please follow
instructions in the README file to compile and execute the read
mapping code (spats). Matlab source code to implement the ML
estimation can be found in spats-0.0.1/src/matlab.

3. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol 10:R25.
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Fig. S1. lllustration of the use of water filling to optimize @. (A) Illustration of the function f} (6¢) and of the solution obtained for a single KKT condition
under two instances of v*. In the first instance (v,*), a strictly positive solution is obtained, whereas in the second instance (v,*), a zero reactivity is assigned.
(B) lllustration of the water-filling technique following ref. 1. The height of each bar is computed from the corresponding parameter y, *. The gradual decreas-
ing of v* can be viewed as flooding the bars up to a level of log(v* — ¢* Y¥-! X;) — log(v* — ¢* ¥X, X;), until the total quantity of water equals c*. The level of
water above each bar (in light blue) corresponds to the optimal ¢, *.

1. Boyd S, Vandenberghe L (2004) Convex Optimization (Cambridge Univ Press, Cambridge, UK).

Average Fraction of Sites with Estimated Reactivity within
15% of Full Sample Estimate
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Fig. S2. Dependence of the ML estimates on the number of mapped reads for the pT181 molecule. Varying numbers of reads were drawn at random from the
observed dataset and used to generate the ML reactivity estimate for each nucleotide. The fraction of these reactivities that were within 15% of the ML
estimate of the full dataset was recorded. This was repeated 200 times for each specified number of reads. Points represent the average over these 200 draws
and error bars represent standard deviations. Very accurate estimates are obtained with only 300,000 reads (10% of the full number of reads), and over half of
the nucleotide positions show accurate reactivities with as little as 16,000 reads (0.5% of the full number of reads).
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Fig. S3. Sample ML estimates based on a fraction of the observed data for the pT181 molecule. The full ML reactivity estimates for each nucleotide of the
pT181 molecule (see Fig. 2 in the main text) were calculated from the 3.2 million mapped reads and are shown in blue with +15% of the estimate plotted as
error bars. The red bars represent an average of the ML reactivity estimate at each nucleotide, calculated from 200 independent random draws of 16,000
observed reads (0.5% of the total) with error bars representing the standard deviation of the estimate at each nucleotide.
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Fig. S4. Signal decay deviates from an exponential model for the specificity domain of Bacillus subtilis RNase P RNA. (A) The correction currently applied to
SHAPE-capillary-electrophoresis (SHAPE-CE) output is based on assuming exponential-like signal decay. The panel depicts such decay, as obtained from our
model when the true reactivities (®) are uniformly distributed over n’ nucleotides and when the drop-off rate (y,) is constant and equals 0.005. Here, n’ = 166 is
the number of nucleotides for which k-fragments were observed, out of 198 nucleotides in the probed molecule. Out of the 198 nucleotides, the RNase P RNA
spans 154, with the rest comprising one structure cassette and identifier bar codes. The support set includes 151 nucleotides from the RNase P domain, spanning
indices 14 to 164. (B) The empirical (+) channel fragment length distribution (i.e., Wy,...,w, ) of RNase P does not display a clear trend of signal decay (from left
to right). (C) The (+) channel signal decay is computed as the ratio between the input signal frequency and the corrected signal portion in Eq. 30 in the main
text. The decay rate is clearly nonuniform, with the decay accelerating over a stretch of about 20 nucleotides toward the 5 end (highlighted in a box). The
accelerated decline reflects a highly reactive region that amounts to a significant portion of the distribution. (D) The empirical (-) channel fragment length
distribution (i.e., ps,....p,y) of RNase P displays an outstanding spike near the 5’ end. (E) The noise decay is computed as the ratio between the input noise
frequency and the corrected noise portion in Eg. 30 in the main text. The expedited decay near the 5’ end implies that the input noise frequencies should be
significantly amplified in this region before they are subtracted from the corrected signal frequencies.
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Table S1. Model sensitivity with respect to the approximation of repeated modification per site

Average fraction of reativities

Average fraction of reativities

Average fraction of reativities

] c within £ 10% of known value within £ 5% of known value within = 1% of known value
10 uniform 0.25 1 1 0.7
0.50 1 1 0.4
1.00 1 0.9 0.2
1.50 1 0.6 0.1
2.00 0.9 0.4 0.1
50 0.25 1 1 1
0.50 1 1 1
1.00 1 1 0.86
1.50 1 1 0.72
2.00 1 1 0.44
20 1 1 1 0.35
40 1 1 0.83
60 1 1 0.98
80 1 1 0.99
20 2 1 0.9 0.2
40 1 1 0.35
60 1 1 0.48
80 1 1 0.61
20 one hairpin 1 1 0.85 0.35
2 0.95 0.55 0.15
50 uniform 1 1 1 0.86
decreasing 1 1 0.92
exponential
increasing 1 1 0.06
exponential
two hairpins 1 1 0.54
Table S2. Robustness of estimates under different model distributions
Fraction of Fraction of Fraction of
reativities within reativities within reativities within
+ 15% of known value + 10% of known value + 5% of known value
Standard Standard Standard
n C) r Average deviation Average deviation Average deviation
50 uniform fixed (0.01) 1 0 1 0 1 0
decreasing 0.91 0.03 0.86 0.04 0.76 0.04
exponential
increasing exponential 0.97 0.02 0.93 0.03 0.83 0.04
two hairpins 0.99 0.01 0.97 0.02 0.86 0.04
10 uniform fixed (0.01) 1 0 1 0 1 0
decreasing 1 0 1 0 1 0
exponential
increasing exponential 1 0 1 0 1 0
one hairpin 1 0 1 0 0.99 0.02
50 uniform two spikes (0.01,0.15) 1 0 1 0 0.99 0.01
four spikes (0.01,0.15) 1 0 1 0 0.99 0.01
two hairpins two spikes (0.01,0.15) 0.98 0.02 0.95 0.03 0.83 0.04
four spikes (0.01,0.15) 0.96 0.02 0.92 0.03 0.81 0.04
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