
Supplemental Material for “Approximation

Methods for State-Space Models”

Shinsuke Koyama1,3, Lucia Castellanos Pérez-Bolde2,3,

Cosma Rohilla Shalizi1 and Robert E. Kass1,2,3

1Department of Statistics

2Department of Machine Learning

3Center for the Neural Basis of Cognition

Carnegie Mellon University, Pittsburgh, PA 15213

email: koyama@stat.cmu.edu

August 11, 2009

1. NUMERICAL COMPUTATION FOR SECOND DERIVATIVES

We describe the numerical algorithm for computing the Hessian matrix, as promised

in Section 2.3 of the main manuscript.

The Laplace approximation requires the second derivative (or the Hessian

matrix) of the log-likelihood function evaluated at its maximum. However, it is

often difficult, and even more often tedious, to get correct analytical derivatives

of the log-likelihood function. In such cases accurate numerical computations of

the derivative may be used, as follows. Consider calculating the second derivative

1

of l(x) at x0 for the one-dimensional case. For n = 0, 1, 2, . . . and c > 1, define

the second central difference quotient,

An,0 = [l(x0 + c−nh0) + l(x0 − c−nh0) − 2l(x0)]/(c
−nh0)

2,

and then for k = 1, 2, . . . , n compute

An,k = An,k−1 +
An,k−1 − An−1,k−1

c2(k+1) − 1
. (1)

When the value of |An,k−An−1,k| is sufficiently small, An,k+1 is used for the second

derivative.

This algorithm is an iterated version of the second central difference formula,

often called Richardson extrapolation, producing an approximation with an error

of order O(h2(k+1)) (Dahlquist & Bjorck 1974).

In the d-dimensional case of a second-derivative approximation at a maximum,

Kass (1987) proposed an efficient numerical routine which reduces the computa-

tion of the Hessian matrix to a series of one-dimensional second-derivative calcu-

lations. The trick is to apply the second-difference quotient to suitably-defined

functions f of a single variable s as follows.

1. Initialize the increment h = (h1, . . . , hd).

2. Find the maximum of l(x), and call it x̂.

2

3. Get all unmixed second derivatives for each i = 1 to d, using the function

xi = x̂i + s

xj = x̂j for j not equal to i

f(s) = l(x(s)).

Compute the second difference quotient; then repeat and extrapolate until

the difference in successive approximations meets a relative error criterion,

as in (1); store as diagonal elements of the Hessian matrix array, l′′i,i = f ′′(0).

4. Similarly, get all the mixed second derivatives. For each i = 1 to d, for each

j = i + 1 to d, using the function

xi = x̂i + s/
√

l′′i,i

xj = x̂j + s/
√

l′′j,j

xk = x̂k for k not equal to i or j

f(s) = l(x(s)).

Compute the second difference quotient; then repeat and extrapolate until

difference in successive approximations is less than relative error criterion

as in (1); store as off-diagonal elements of the Hessian matrix array, l′′i,i =

(f ′′(0)/2 − 1)
√

l′′i,il
′′
j,j.

In practice, the increment for computing the Hessian at time t would be taken

to be hi = 0.1 ×
√

v
(i,i)
t|t−1, i = 1, 2, . . . , d, where v

(i,i)
t|t−1 is the (i, i)-element of the

covariance matrix of the predictive distribution at time t.

3

2. LAPLACE’S METHOD

Here, we briefly describe Laplace’s method, especially the details used in the

proofs of Lemma 6 and Proposition 7.

We consider the following integral,

I(γ) =

∫
g(x)e−γh(x)dx, (2)

where x ∈ R; γ, the expansion parameter, is a large positive real number; h(x)

and g(x) are independent of γ (or very weakly dependent on γ); and the interval

of integration can be finite or infinite. Laplace’s method approximates I(γ) as a

series expansion in descending powers of γ. There is a computationally efficient

method to compute the coefficients in this infinite asymptotic expansion (Theo-

rem 1.1 in (Wojdylo 2006)). Suppose that h(x) has an interior minimum at x0,

and h(x) and g(x) are assumed to be expandable in a neighborhood of x0 in series

of ascending powers of x. Thus, as x → x0,

h(x) ∼ h(x0) +
∞∑

s=0

as(x − x0)
s+2,

and

g(x) ∼
∞∑

s=0

bs(x − x0)
s,

in which a0, b0 ̸= 0.

Let us introduce two dimensionless sets of quantities, Ai ≡ ai/a0 and Bi ≡

bi/b0, as well as the constants α1 = 1/a
1/2
0 and c0 = b0/a

1/2
0 . Then the integral in

2) can be asymptotically expanded as

I(γ) ∼ c0e
−γh(x0)

∞∑
s=0

Γ(s +
1

2
)α2s

1 c∗2sγ
−s− 1

2 ,

4

where

c∗s =
s∑

i=0

Bs−i

i∑
j=0

 − s+1
2

j

 Ci,j(A1, . . .) ,

where Ci,j(A1, . . .) is a partial ordinary Bell polynomial, the coefficient of xi in

the formal expansion of (A1x + A2x
2 + · · ·)j. Ci,j(A1, . . .) can be computed by

the following recursive formula,

Ci,j(A1, . . .) =
i−1∑

m=j−1

Ai−mCm,j−1(A1, . . .) ,

for 1 ≥ j ≥ i. Note that C0,0(A1, . . .) = 1, and Ci,0(A1, . . .) = C0,j(A1, . . .) = 0 for

all i, j > 0.

3. THE POPULATION VECTOR ALGORITHM

The population vector algorithm (PVA) is a standard method for neural decoding,

especially for directionally-sensitive neurons like the motor-cortical cells recorded

from in the experiments we analyze (Dayan & Abbott 2001, pp. 97–101). Briefly,

the idea is that each neuron i, 1 ≤ i ≤ N , has a preferred motion vector θi, and

the expected spiking rate λi varies with the inner product between this vector

and the actual motion vector x(t),

λi(t) − ri

Λi

= x(t) · θi , (3)

where ri is a baseline firing rate for neuron i, and Λi a maximum firing rate. ((3)

corresponds to a cosine tuning curve.) If one observes yi(t), the actual neuronal

counts over some time-window ∆, then averaging over neurons and inverting gives

5

the population vector

xpop(t) =
N∑

i=1

y(t) − ri∆

Λi∆
θi ,

which the PVA uses as an estimate of x(t). If preferred vectors θi are uniformly

distributed, then xpop converges on a vector parallel to x as N → ∞, and is in

that sense unbiased (Dayan & Abbott 2001, p. 101). If preferred vectors are not

uniform, however, then in general the population vector gives a biased estimate.

4. REAL DATA ANALYSIS

Figure 1 shows trajectories of the true and estimated (by LGF, PF-100 and PVA)

cursor position of the real data analysis. It is seen that the LGF provides better

estimation than either the PF-100 or the PVA.

REFERENCES

Dahlquist, G., & Bjorck, A. (1974), Numerial Methods, New Jersey, Prentice

Hall: Englewood.

Dayan, P., & Abbott, L. F. (2001), Theoretical Neuroscience, Cambridge, Mas-

sachusetts: MIT Press.

Kass, R. E. (1987), “Computing observed information by finite differences,” Com-

munication in Statistics: Simulation and Computation, 2, 587–599.

Wojdylo, J. (2006), “On the coefficients that arise from Laplace’s method,” Jour-

nal of Computational and Applied Mathematics, 196.

6

0 0.2 0.4
0

0.02

0.04

0.06

0 0.2 0.4
−0.02

0

0.02

0.04

0.06

0 0.2 0.4
−0.04

−0.02

0

0.02

0.04

0 0.1 0.2 0.3
−0.02

−0.01

0

0.01

0.02

0.03

0 0.1 0.2 0.3
−0.06

−0.04

−0.02

0

0.02

0 0.1 0.2 0.3
0

0.01

0.02

0.03

0.04

0 0.2 0.4 0.6
−0.02

0

0.02

0.04

0.06

0.08

0 0.2 0.4 0.6
−0.08

−0.06

−0.04

−0.02

0

0.02

0 0.2 0.4 0.6
−0.02

0

0.02

0.04

0 0.1 0.2 0.3
−0.01

0

0.01

0.02

0.03

0.04

0 0.1 0.2 0.3
−0.02

0

0.02

0.04

0.06

0 0.1 0.2 0.3
−0.03

−0.02

−0.01

0

0.01

0 0.1 0.2 0.3 0.4
−0.04

−0.03

−0.02

−0.01

0

0.01

0 0.1 0.2 0.3 0.4
−0.02

0

0.02

0.04

0 0.1 0.2 0.3 0.4
−0.02

0

0.02

0.04

0.06

True LGF1 PF100 PVA

x position y position z position

time [s]

Figure 1: The trajectories of the cursor position. “True”: actual trajectory.
“LGF1”: trajectories estimated by first-order LGF, respectively. “PF100”: tra-
jectory estimated by the particle filter with 100 particles. “PVA”: trajectory
estimated by the population vector algorithm. The trajectories estimated by the
LGF2 are not shown; they are similar to those estimated by the LGF1.

7

