Phenazine-1-carboxylic acid promotes bacterial biofilm development

via ferrous iron acquisition

Yun Wang^{1,3}*, Jessica C. Wilks¹, Thomas Danhorn^{1,3}, Itzel Ramos^{1,3}, Laura Croal¹, and Dianne K. Newman^{1,2,3}*

¹Department of Biology, ²Department of Earth, Atmospheric and Planetary Sciences,

³Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77

Massachusetts Avenue, Cambridge, MA 02139

Supplemental Figure

WT(no addition) Δphz (no addition) Δphz (+ PCA)

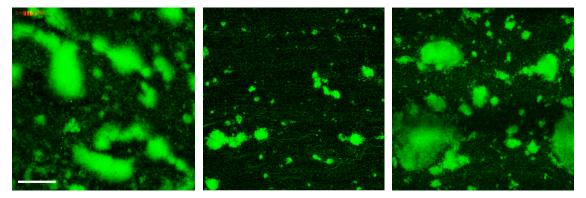


Fig. S1. PCA can rescue the biofilm defect of the *P. aeruginosa* PA14 phenazine-null strain (Δphz), resulting in a biomass similar to the wild type (WT). Confocal microscopic images of YFP-labeled PA14 WT and Δphz strains incubated in biofilm flow cells at 22 °C for 6 days with no addition (for both strains), or with addition of 10 µM PCA (for Δphz), to 1% TSB medium. Images are top-down views (x-y plane); scale bar: 100 µm. Results are representative of 4 experiments.