Conformational folding and stability of HET-C2 glycolipid transfer protein (GLTP)-fold: Does a molten globule-like state regulate activity?[†]

Roopa Kenoth^{1,‡}, Ravi Kanth Kamlekar^{1,‡}, Dhirendra K. Simanshu^{2,‡}, Yongguang Gao¹, Lucy Malinina³, Franklyn G. Prendergast⁴, Julian G. Molotkovsky⁵, Dinshaw J. Patel^{2,*}, Sergei Y. Venyaminov^{4,*}, and Rhoderick E. Brown^{1,*}

¹The Hormel Institute, University of Minnesota, Austin, Minnesota;
²Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York;
³Structural Biology, CIC bioGUNE, Derio, Spain;
⁴Mayo Clinic College of Medicine, Rochester, Minnesota;
⁵Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Supplemental Information for Publication

рН		2.0	3.0	4.0	5.0	6.0	7.4	9.0	10.0
Helix	regular	30.8 ± 3.7	33.3±5.3	36.0±4.1	36.4±4.1	35.6±4.0	37.4±4.6	37.0±2.2	34.9±4.5
	distorted	20.6 ± 0.9	21.6±2.4	24.4±2.4	24.0±2.0	23.0±2.4	22.7±2.7	22.5±2.2	21.4±2.9
•	total	51.4 ± 3.9	54.9±6.9	60.4±2.6	60.4±2.6	58.6±3.1	60.1±4.3	59.5±4.9	56.3±5.6
β -strand	regular	3.7 ± 2.9	3.7±2.9	3.4±2.4	4.2±2.0	4.6±2.1	3.9±2.8	4.2±2.6	4.2±2.4
	distorted	4.5 ± 1.5	4.0±1.5	4.0±2.2	4.1±1.9	4.4±1.9	4.0±1.8	4.4±1.9	4.5±1.6
	total	8.2 ± 4.2	7.7±4.0	7.4±4.4	8.3±3.6	9.0±3.8	7.9±4.4	8.6±4.4	8.7±3.6
Turns		14.3 ± 3.5	13.0±3.3	13.1±2.9	12.7±3.3	12.6±3.9	11.1±3.6	11.7±3.9	12.5±3.8
Unordered		28.1 ± 1.5	24.9±4.0	20.5±3.2	20.6±2.2	22.7±2.5	22.9±4.1	22.2±3.3	24.5±4.2
# of helical segments		10.7 ± 0.4	11.2±1.2	12.7±1.2	12.5±1.1	12.0±1.2	11.8±1.4	11.7±1.2	11.2±1.5
Average helix length		10.0 ± 0.7	10.2±0.8	10.0±1.2	10.1±1.2	10.3±1.1	10.8±1.4	10.7±1.2	10.6±1.1
# of β-strands		4.7 ± 1.5	4.1±1.5	4.1±2.1	4.3±1.9	4.5±1.9	4.1±1.8	4.6±1.9	4.7±1.6
Average β -strand length		3.5 ± 1.2	3.7±1.0	3.6±0.7	3.6±0.8	3.6±0.9	3.9±1.0	3.9±0.9	3.8±0.9
Tertiary structure class		$\alpha + \beta$							

Table S1. Secondary structure calculations of HET-C2 at various pH values from far-UV CD spectra

* <u>helix regular</u> or <u> β -strand regular</u>: fraction of residues (%) in central part of helical segments or strands; <u>helix distorted</u> or <u> β -strand distorted</u>: fraction of terminus residues (%) in helices (two at each end of helix, total of four per helical segment) or β -strands (one residue at each end of strand, total of two per strand); <u>total</u>: regular + distorted; <u>average length of helix</u> or <u> β -strand</u>: average number of residues per helix of β -strand, translation per one residue = 1.5 Å for α -helix and 3.3 Å for β -strand

Secondary structure was calculated from far-UV CD spectra as detailed previously (*18,25*) using the CDPro software package, which is a modified version of three methods: SELCON3, CONTINLL locally linearized approximation of CONTIN, and CDSSTR, using set of 48 reference proteins or 22 α + β reference proteins selected by the CLASTER program. Tertiary structure class was determined by CLASTER program. 6 values for each type of secondary structure (three methods of calculation × two sets of reference proteins) were averaged and the average values ± root-mean-square deviation are presented.

Secondary structure classification was determined with the DSSP program. Output included α -helix (H), 3₁₀-helix (G), β -sheet (E), β -bridges (B), turns (T), and bends (S), which were further grouped as follows: the α - and 3₁₀-helix were treated in CDPro as helix; β -sheet as β -strand; turns and bends were treated as turns; a minimum of two adjacent residues were required for such grouping for turns and bends. Single residues assigned to a structure (such as β -bridges, turns, and bends) were grouped as unordered, which contains residues that are not assigned to any defined structural class.

GLTP-folds of HET-C2 and GLTP. Superpositioning of HET-C2 (gold; PDB 3kv0) and human GLTP structures (cameo pink; PDB 1sx6) determined by X-ray diffraction. The glucosylceramide (green) in the GLTP-fold binding pocket is adapted from 1sx6. Outward displacement of helix-6 (left) occurs in GLTP during accommodation of glycolipid. Residues labeled in brown refer to HET-C2 while those in labeled in black refer to GLTP. Although the two core structures are very similar, the C-terminal (**C** and **C**) and N-terminal regions of each protein are strikingly different.

Cysteine localization in HET-C2 and GLTP. In HET-C2 (gold), the two cysteine residues (blue), Cys^{162} and Cys^{118} , are too far apart (~15.6 Å) to stabilize conformation via disulfide bridging, as revealed by the crystal structure [PDB 3kv0; (*18*)]. In GLTP (cameo pink), the three cysteine residues (blue) also are too far apart to undergo intramolecular disulfide bridging, e.g. $\text{Cys}^{36} \leftrightarrow \text{Cys}^{112} = 14 \text{ Å}$; $\text{Cys}^{112} \leftrightarrow \text{Cys}^{176} = 8 \text{ Å}$; $\text{Cys}^{36} \leftrightarrow \text{Cys}^{176} = 9.3 \text{ Å}$ [PDB 1swx; (*19*)]. Trp residues are green and key sugar headgroup anchoring residues are red and yellow highlighted.

Figure S3

The surface accessibility of the two intrinsic Trp residues of HET-C2. Space-filling rendition of HET-C2 derived from [PDB 3kv0; (*18*)]. Electrostatic surface charges are shown in blue for positive residues and in red for negative residues.