
Appendix A  

The purpose of the following analysis is to derive equation (2.1.1.2), representing the equilibrium 

between the force generated in the fiber and the shear resisting force of the endomysium. 

  First, the shear force exerted on the fiber by the endomysium, Fend, was calculated as a 

function of fiber stretch λ.  

 Assuming that shear strain is linearly distributed along the length of the endomysium layer 

we can write:  

,                                        (A.1) 

where  is the shear strain in the endomysium and 

                             (A.2)                           

is the displacement of a point on the periphery of the fiber at distance z from the fixed end of the 

fiber (Fig. 1B). h(λ) is the thickness of the endomysium (Fig. 1B) which is a function of fiber stretch 

λ.  

The shear force exerted on the fiber by the endomysium is obtained by integrating the shear 

stress over the surface of the fiber, where we have assumed that shear strain is constant through the 

thickness of the endomysium.  

With the use of equation (2.1.1.1) and (A.1-2) we can write:   

                                                (A.3) 
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where  is the radius of the fiber at length . Assuming incompressibility of the fiber 

gives , where r0 is the initial fiber diameter (Fig. 1A). 

We calculated h(λ) using the assumption of incompressibility for the endomysium. The 

initial volume of the endomysium layer is: , where h0 

is the initial thickness of the endomysium (Fig. 1A). The endomysium volume at fiber length l  is 

given by . Assuming incompressibility of the endomysium 

: 

                                               (A.4) 

Equation (A.4) has one positive solution:  

.                                                (A.5) 

The expression for was further simplified as:  

,                                       (A.6) 

where κ = h0/ r0.  

Equation (A.6) was substituted into (A.3) to give: 



.                                               (A.7) 

 

Similarly the force generated in the fiber was calculated using the stress-strain behavior 

given in equation (2.1.1): 

 ,                                      (A.8) 

where A0 is the initial fiber cross-sectional area, and the following substitution was made for fiber 

area A, based on the assumption that muscle fibers are incompressible: A = A0/ λ.  

 Setting the right hand sides of equations (A.7) and (A.8) equal to each other produces the 

equilibrium equation (2.1.1.2). 

As stated above, this analysis relies on the assumption that shear strain is constant through 

the thickness of the endomysium.  This assumption results in an underestimation of shear force and 

thereby an underestimation of active fiber force particularly for fibers with lower optimal length and 

lower fiber volume fractions. This underestimation results from the fact that the shear strains would 

not be constant through the thickness, but larger at the fiber and smaller at the outside surface of the 

endomysium.  We tested the effects of this assumption by comparison with FE models (Fig. 8). 

 



Appendix B  

The following is the derivation of the equilibrium equation for force transmission through tension in 

the endomysium (Fig. 2).   

When the fiber is activated it shortens until its active force is balanced by the passive tension 

within the endomysium. We have used the following equation to describe the tensile behavior of 

endomysium:  

,                                                             (B.1) 

where  is the tensile modulus of endomysium.  and can be written as: 

,                                                    (B.2) 

where is as before the resting length of the fiber and is the length of the fascicle assumed 

to remain constant throughout the deformation. 

The equation of equilibrium was obtained from : 

,                                               (B.3) 

where (B.2) has been substituted into (B.1).  
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Appendix C  

In this appendix we derive the equilibrium equation for force transmission from an intrafascicularly 

terminating fiber within a muscle that undergoes length change. The force generated in and 

transmitted from the fiber was calculated once static equilibrium is reached. The fiber in its 

deformed configuration can still be described using the schematic in Fig. 1B. However, , the 

outer length of the endomysium layer, is no longer equal to , the resting length of the fiber. , 

is determined by the overall stretch of the surrounding muscle tissue, defined as , so that:  

.                                                     (C.1) 

The final length of the fiber was obtained by determining the equilibrium between the active 

force generated in the fiber and the shear force within the endomysium that resists the shortening of 

the fiber, .  can be calculated following the same logic as Equations (A.1-7) and is 

equal to:  

.               (C.2) 

The equation of equilibrium becomes:  

,          (C.3) 

where  is the fiber radius at resting length and is the endomysium thickness to fiber 

radius at resting length.        

Appendix C



We solved equation (C.3) for a fiber with an endomysium shear modulus of 5 Pa for three 

example cases of  and  in order to compare with the force transmitted 

from the same fiber for  (where equation (C.3) becomes identical to (2.1.1.2)). We plotted the 

ratio of force transmitted from the terminating fiber to the force that the fiber would generate if it 

were held isometrically at a fixed length of , .  

 

Figure C.1. The ratio of force transmitted from the terminating fiber to the isometric force that can 
be transmitted from a fiber of the same cross-sectional area, if it were held at a fixed length, , 
plotted against the ratio of fiber resting length to fiber diameter at resting length. Fiber volume 
fraction, Vf, is 90% and endomysium shear modulus, Gend, is 5Pa.  




