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Web Appendix A

Web Figures 1 and 2 compare the power prior models presented in Subsection 3.3 for fixed

x̄0 = 0, σ2 = σ2
0 = σ̂2

0 = 1 with values of x̄ varying by column. Evidence for commensurability

among the current and historical datasets is weakest in the first columns and strongest in the

fourth columns (identical sample means and variances). Web Figure 1 compares marginal

posterior distributions for α0 derived from the modified power prior (11) (solid) and Ibrahim-

Chen (IC) (dashed) power prior under a Beta(1, 1) (uniform) hyperprior. Each graph in the

top row shows results for n = 30 and n0 = 60, while n0 = n = 107 in the bottom row. In all 8

scenarios, (11) places slightly more density on large values of α0 relative to the IC marginal

posterior. Notice that failing to normalize the prior with respect to µ causes the IC posterior

to be skewed relative to (11). The figure also clearly elucidates the concern about excessive

overattenuation for vague π(α0). The bottom right graph contains posteriors that are flat

despite very strong evidence for commensurability (107 observations with identical sufficient

statistics) among the historical and current datasets.

Web Figure 2 show results under the proposed LCPP model (14) used in Section 4, which

assumes a Cauchy(0, 30) hyperprior on log(τ) and g⋆ (log(τ)) = max (log(τ), 1). The top

row contains marginal posterior (solid) and prior (dashed) distributions for α0. The prior

for α0 is peaked at 1 and flat for values less than 0.6, which facilitates posteriors that are

peaked at 1 when evidence for commensurability is strong and flat when the historical and

current data conflict. The bottom row contains marginal posterior distributions for log(τ), as

well as the fat-tailed Cauchy(0, 30) hyperprior. The graphs show that the posterior for log(τ)
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shrinks to values less than 0 when evidence for commensurability is weak. For commensurate

data the posterior is highly right-skewed over very large, positive values of τ , which forces

α0 to be near 1 and facilitates more borrowing. This results in much less overattenutation

of consistent historical data, yet facilitates sufficient variance inflation when evidence for

commensurability with the current data is weak. Simulations in Section 4 demonstrate that

the LCPP is more power for a given Type I error rate when compared to the MPP for

Gaussian data.

[Figure 1 about here.]

[Figure 2 about here.]

Web Appendix B

Web Figure 3 contains histograms of the average change in ld tumor sum from baseline

for the colorectal cancer data used in Section 5: historical for y0 (left), y|Z = 0 (middle),

and y|Z = 1 (right). The histograms suggest that assumptions of normality are acceptable.

Notice that the histogram for FOLFOX (right) places more mass on smaller values. This

suggests that FOLFOX achieved a greater reduction in ld sum on average than the IFL

regimen.

[Figure 3 about here.]
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Figure 1. Marginal posterior distributions for α0 from the MPP (11) (solid) and Ibrahim-
Chen (dashed) power prior models under a Beta(a = 1, b = 1) hyperprior, where x̄0 = 0, and
fixed σ2 = σ2

0 = σ̂2
0 = 1. Each graph in the top row shows results for n = 30 and n0 = 60,

while n0 = n = 107 in the bottom row. Each column corresponds to x̄ = (−1.2,−0.8,−0.4, 0).

x̄ = −1.2 x̄ = −0.8 x̄ = −0.4 x̄ = 0

0.0 0.2 0.4 0.6 0.8 1.00.
00

0
0.

01
0

0.
02

0
de

ns
ity

0.0 0.2 0.4 0.6 0.8 1.00.
00

0
0.

01
0

0.
02

0
de

ns
ity

0.0 0.2 0.4 0.6 0.8 1.00.
00

0
0.

01
0

0.
02

0
de

ns
ity

0.0 0.2 0.4 0.6 0.8 1.00.
00

0
0.

01
0

0.
02

0
de

ns
ity

−100 −50 0 50 100 150 2000.
00

00
0.

00
06

0.
00

12
de

ns
ity

−100 −50 0 50 100 150 2000.
00

00
0.

00
06

0.
00

12
de

ns
ity

−100 −50 0 50 100 150 2000.
00

00
0.

00
06

0.
00

12
de

ns
ity

−100 −50 0 50 100 150 2000.
00

00
0.

00
06

0.
00

12
de

ns
ity

Figure 2. Marginal posterior (solid) and prior (dashed) distributions for α0 and log(τ)
under the LCPP (14) used in Section 4: g⋆ (log(τ)) = max (log(τ), 1) and Cauchy(0, 30)
hyperprior on log(τ), where x̄0 = 0, n0 = 60, n = 30, and fixed σ2 = σ2

0 = σ̂2
0 = 1. Each

graph in the top row shows results for α0, while the bottom row shows results for log(τ).
Each column corresponds to x̄ = (−1.2,−0.8,−0.4, 0).
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Figure 3. Histograms of average change in ld tumor sum from baseline for the colorectal
cancer data used in Section 5: historical IFL (left), concurrent IFL (center), FOLFOX (right).


