SUPPLEMENTARY DATA

Figure S1. Tissue specific *Vhl* inactivation following Ad-Cre tail vein injection leads to fatty liver. (A) PCR analysis of genomic DNA isolated from tissues of *Vhl*^{+/+} and *Vhl*^{F/F} animals at the indicated number of days post Ad-Cre injection; 1:1 mixture of unrecombined (*Vhl*^F) and efficiently recombined (*Vhl*^{Frec}) genomic DNA shown as a control. (B) Microscopic analysis of representative liver sections of animals of the indicated genotypes after Ad-Cre injection. H&E, hematoxylin eosin staining; ORO, Oil red O stained cryosections counterstained with hematoxylin; scale bar, 50µm.

Table S1

Carnitine and acylcarnitine levels in livers of nonfasted and 24 hours fasted animals sacrificed on day 4 after Ad-Cre injection. Values are mean \pm standard deviation and are presented as nmol/g of liver . * p < 0.05, ** p < 0.01 when compared to wild-type under the same conditions.

Nonfasted	$Vhl^{+/+} (n = 7)$	$Vhl^{F/F}(n=7)$
Free carnitine	415.4 ± 83.4	306.8 ± 39.9**
Acetylcarnitine (C2)	18.4 ± 22.2	$56 \pm 25.1*$
Propionylcarnitine (C3)	5.3 ± 3.2	6.1 ± 1.8
Butyrylcarnitine (C4)	0.83 ± 0.59	2.71 ± 1.38**
Isovalerylcarnitine (C5)	0.86 ± 0.2	$0.61 \pm 0.15*$
Octanoylcarnitine (C8)	0.0019 ± 0.0005	0.0029 ± 0.0013
Myristoylcarnitine (C14)	0.0025 ± 0.0012	0.0123 ± 0.0162
Palmitoylcarnitine (C16)	0.044 ± 0.031	0.192 ± 0.238
Fasted	$Vhl^{+/+}$ (<i>n</i> = 6)	$Vhl^{F/F}$ $(n = 7)$
Fasted Free carnitine	<i>Vhl</i> ^{+/+} ($n = 6$) 622.3 ± 196.5	<i>Vhl^{F/F}</i> (<i>n</i> = 7) 366.1 ± 51.7**
Fasted Free carnitine Acetylcarnitine (C2)	<i>Vhl</i> ^{+/+} (<i>n</i> = 6) 622.3 ± 196.5 10.1 ± 5	<i>Vhl^{F/F}</i> (<i>n</i> = 7) 366.1 ± 51.7** 26.2 ± 15.5*
Fasted Free carnitine Acetylcarnitine (C2) Propionylcarnitine (C3)	$Vhl^{+/+}$ (n = 6) 622.3 ± 196.5 10.1 ± 5 3.4 ± 1.8	$Vhl^{F/F}$ (n = 7) 366.1 ± 51.7** 26.2 ± 15.5* 3.8 ± 1.1
Fasted Free carnitine Acetylcarnitine (C2) Propionylcarnitine (C3) Butyrylcarnitine (C4)	$Vhl^{+/+}$ (n = 6) 622.3 ± 196.5 10.1 ± 5 3.4 ± 1.8 0.61 ± 0.28	$Vhl^{F/F} (n = 7)$ $366.1 \pm 51.7^{**}$ $26.2 \pm 15.5^{*}$ 3.8 ± 1.1 $1.49 \pm 0.85^{*}$
Fasted Free carnitine Acetylcarnitine (C2) Propionylcarnitine (C3) Butyrylcarnitine (C4) Isovalerylcarnitine (C5)	$Vhl^{+/+} (n = 6)$ 622.3 ± 196.5 10.1 ± 5 3.4 ± 1.8 0.61 ± 0.28 0.85 ± 0.45	$Vhl^{F/F} (n = 7)$ $366.1 \pm 51.7^{**}$ $26.2 \pm 15.5^{*}$ 3.8 ± 1.1 $1.49 \pm 0.85^{*}$ 0.5 ± 0.15
Fasted Free carnitine Acetylcarnitine (C2) Propionylcarnitine (C3) Butyrylcarnitine (C4) Isovalerylcarnitine (C5) Octanoylcarnitine (C8)	$Vhl^{+/+} (n = 6)$ 622.3 ± 196.5 10.1 ± 5 3.4 ± 1.8 0.61 ± 0.28 0.85 ± 0.45 0.0017 ± 0.0007	$Vhl^{F/F} (n = 7)$ $366.1 \pm 51.7^{**}$ $26.2 \pm 15.5^{*}$ 3.8 ± 1.1 $1.49 \pm 0.85^{*}$ 0.5 ± 0.15 $0.0035 \pm 0.0014^{*}$
Fasted Free carnitine Acetylcarnitine (C2) Propionylcarnitine (C3) Butyrylcarnitine (C4) Isovalerylcarnitine (C5) Octanoylcarnitine (C8) Myristoylcarnitine (C14)	$Vhl^{+/+} (n = 6)$ 622.3 ± 196.5 10.1 ± 5 3.4 ± 1.8 0.61 ± 0.28 0.85 ± 0.45 0.0017 ± 0.0007 0.0168 ± 0.007	$Vhl^{F/F} (n = 7)$ $366.1 \pm 51.7^{**}$ $26.2 \pm 15.5^{*}$ 3.8 ± 1.1 $1.49 \pm 0.85^{*}$ 0.5 ± 0.15 $0.0035 \pm 0.0014^{*}$ 0.0139 ± 00.0068

Table S2

Sequences of primers used in PCR analysis.

Primer name	Sequence $5' \rightarrow 3'$
Vhl F1	TGCCTGGTACCCACGAAAGTGTC
Vhl R1	CTGACTTCCACTGATGCTTGTCACAG
Vhl F2	CCGGAGTAGGATAAGTCAGCTGAG
Hif1b F2	TGCCAACATGTGCCACCATGT
Hif1b R2	GTGAGGCAGATTTCTTCCATGCTC
Hif1b F4	ACGCACTACAACACCTGAGCTAA

Table S3

Sequences of primers used in qRT-PCR analysis.

Protein	Gene (MGI)	Sequence 5'-3'	Reference/Note
Cyclophilin b	Ppib	TGGAGAGCACCAAGACAGACA TGCCGGAGTCGACAATGAT	[1]
Vascular endothelial growth factor	Vegf	CACGACAGAAGGAGAGCAGAA CGCTGGTAGACGTCCATGA	Nguyen et al., unpublished
Glucose transporter 1	Glut1	GGTGTGCAGCAGCCTGTGTA CAACAAACAGCGACACCACAGT	
Glucose transporter 1	Glut1	CCTGCTCATCAATCGTAACGAGG CGACCCTCTTCTTTCATCTCC	
SREBP cleavage-activating protein	SCAP	ATTTGCTCACCGTGGAGATGTT GAAGTCATCCAGGCCACTACTAATG	[2]
Insulin induced gene 1	Insig-1	TCACAGTGACTGAGCTTCAGCA TCATCTTCATCACACCCCAGGAC	[3]
Insulin induced gene 2a	Insig-2a	CCCTCAATGAATGTACTGAAGGATT TGTGAAGTGAAGCAGACCAATGT	[3]
Insulin induced gene 2b	Insig-2b	CCGGGCAGAGCTCAGGAT GAAGCAGACCAATGTTTCAATGG	[3]
Sterol regulatory element binding protein 1a	SREBP-1a	GGCCGAGATGTGCGAACT TTGTTGATGAGCTGGAGCATGT	[2]
Sterol regulatory element binding protein 1c	SREBP-1c	GGAGCCATGGATTGCACATT GGCCCGGGAAGTCACTGT	[2]
Sterol regulatory element binding protein 2	SREBP-2	GCGTTCTGGAGACCATGGA ACAAAGTTGCTCTGAAAACAAATCA	[2]
Farnesyl diphosphate synthase	Fpps	ATGGAGATGGGCGAGTTCTTC CCGACCTTTCCCGTCACA	[2]
Squalene Synthase, Farnesyl diphosphate farnesyl transferase 1	Fdft1	CCAACTCAATGGGTCTGTTCCT TGGCTTAGCAAAGTCTTCCAACT	[2]
3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1	Hmgcs1	GCCGTGAACTGGGTCGAA GCATATATAGCAATGTCTCCTGCAA	[2]
3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 (mitochondrial)	Hmgcs2	GACTTCCTGTCATCCAGC GGTGTAGGTTTCTTCCAGC	
3-hydroxy-3-methylglutaryl-Coenzyme A reductase	Hmgcr	CTTGTGGAATGCCTTGTGATTG AGCCGAAGCAGCACATGAT	[2]
Low density lipoprotein receptor	Ldlr	AGGCTGTGGGGCTCCATAGG TGCGGTCCAGGGTCATCT	[2]
Very low density lipoprotein receptor	Vldlr	ACCTGTTCCTGTCCCAATGG TCACTGTAAGTCACAGGAGTTGAAGTAC	

Peroxisome proliferator-activated receptor α	Ppara	ACAAGGCCTCAGGGTACCA GCCGAAAGAAGCCCTTACAG	[4]
Peroxisome proliferator-activated receptor α	Ppara	GTTCACGCATGTGAAGGCTGTAAG CATTGTGTGACATCCCGACAGAC	
Peroxisome proliferator-activated receptor δ	Ppard	ACGCACCCTTTGTCATCCA TTCCACACCAGGCCCTTCT	
Peroxisome proliferator-activated receptor γ	Pparg	CACAATGCCATCAGGTTTGG GCTGGTCGATATCACTGGAGATC	[4]
Liver X receptor α	Nr1h3	TCTGGAGACGTCACGGAGGTA CCCGGTTGTAACTGAAGTCCTT	[5]
Retinoid X receptor α	Rxra	CCTTCACCAAGCACATCTG TGTAGGTCAGGTCTTTGCG	
ATP-binding cassette protein A1	Abcal	CGTTTCCGGGAAGTGTCCTA GCTAGAGATGACAAGGAGGATGGA	[1]
ATP-binding cassette protein G5	Abcg5	TGGATCCAACACCTCTATGCTAAA GGCAGGTTTTCTCGATGAACTG	[1]
Cholesterol 7-a hydroxylase; Cytochrome P450, family 7, subfamily A, polypeptide 1	Cyp7a1	AGCAACTAAACAACCTGCCAGTACTA GTCCGGATATTCAAGGATGCA	[1]
Malic enzyme	Me1	GCCGGCTCTATCCTCCTTTG TTTGTATGCATCTTGCACAATCTTT	[1]
Acyl-CoA synthetase short-chain family member 2	Acss2	GCTGCCGACGGGATCAG TCCAGACACATTGAGCATGTCAT	[1]
Acetyl-CoA carboxylase 1	Acaca	TGGACAGACTGATCGCAGAGAAAG TGGAGAGCCCCACACACA	[2]
Fatty Acid Synthase	Fasn	GCTGCGGAAACTTCAGGAAAT AGAGACGTGTCACTCCTGGACTT	[2]
Stearoyl CoA Desaturase 1	Scd1	CCGGAGACCCCTTAGATCGA TAGCCTGTAAAAGATTTCTGCAAACC	[2]
Glycerol-3-phosphate acyltransferase, mitochondrial	Gpam	CAACACCATCCCCGACATC GTGACCTTCGATTATGCGATCA	[1]
Diacylglycerol acyltransferase 1	Dgatl	GAGGCCTCTCTGCCCCTATG GCCCCTGGACAACACAGACT	[6]
Diacylglycerol acyltransferase 2	Dgat2	CCGCAAAGGCTTTGTGAAG GGAATAAGTGGGAACCAGATCA	[6]
Acyl glycerol-3-phosphate acyltransferase 1	Agpat1	GCTGGCTGGCAGGAATCAT GTCTGAGCCACCTCGGACAT	[6]
Acyl glycerol-3-phosphate acyltransferase 2	Agpat2	TTTGAGGTCAGCGGACAGAA AGGATGCTCTGGTGATTAGAGATGA	[6]
Acyl glycerol-3-phosphate acyltransferase 3	Agpat3	CCAGTGGCTTCACAAGCTGTAC CCCTGGGAATACACCCTTCTG	
Acyl glycerol-3-phosphate acyltransferase T4	Agpat4	ACTTCGTGGAAATGATCTTTTGC GAGGTGCAGCAGGCTCTTG	

Acyl-Coenzyme A oxidase 1, palmitoyl	Acox1	AGATTGGTAGAAATTGCTGCAAAA ACGCCACTTCCTTGCTCTTC	
Cytochrome P450, family 4, subfamily a, polypeptide 14	Cyp4a14	CCCCTCTAGATTTGCACCAGAT TCCCAATGCAGTTCCTTGATC	
Acetyl -CoA carboxylase 2	Acacb	GGGCTCCCTGGATGACAAC GCTCTTCCGGGAGGAGTTCT	[7]
Carnitine palmitoyl transferase 1, liver isoform	Cptla	GACAGCTATGCCAAATCTCTGCTG CAGGAATGCTCTGCGTTTATGCC	
Carnitine palmitoyl transferase 2	Cpt2	AGCCTACCTGGTCAATGCATATC GGGTTTGGGTATACGAGTTGAATT	
Medium-chain specific acyl-CoA dehydrogenase (Mcad)	Acadm	GCAACTGCCCGCAAGTTT TACTCCCCGCTTTTGTCATATTC	
Long-chain specific acyl-CoA dehydrogenase (Lcad)	Acadl	TCAATGGAAGCAAGGTGTTCA GCCACGACGATCACGAGAT	
Microsomal triglyceride transfer protein	Mttp	CCTACCAGGCCCAACAAGAC CGCTCAATTTTGCATGTATCC	[4]
Adipophilin	Adfp	ATGAGTCCCACTGTGTTGAG GCCTGATCTTGAATGTTCTGTG	
Phosphoenolpyruvate carboxykinase, cytosolic	Pck1	GTGCTGGAGTGGATGTTCGG CTGGCTGATTCTCTGTTTCAGG	[8]
Glucose 6 phosphatase	G6pc	ACTGTGGGGCATCAATCTCCTC CGGGACAGACAGACGTTCAGC	[8]
Peroxisome proliferative activated receptor, gamma, coactivator 1 (PGC-1α)	Ppargc1a	AACCACACCCACAGGATCAGA TCTTCGCTTTATTGCTCCATGA	[4]
Pyruvate dehydrogenase kinase	Pdk1	GTGTTTGCTGAAGCTCCTAAAGG TGTTCAAAACCACGCCCAAT	

Supplementary References

- Liang, G., Yang, J., Horton, J., Hammer, R., Goldstein, J., and Brown, M. (2002). Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. J Biol Chem 277, 9520-9528.
- Yang, J., Goldstein, J., Hammer, R., Moon, Y., Brown, M., and Horton, J. (2001). Decreased lipid synthesis in livers of mice with disrupted Site-1 protease gene. Proc Natl Acad Sci U S A 98, 13607-13612.
- Yabe, D., Komuro, R., Liang, G., Goldstein, J., and Brown, M. (2003). Liverspecific mRNA for Insig-2 down-regulated by insulin: implications for fatty acid synthesis. Proc Natl Acad Sci U S A 100, 3155-3160.
- Chung, S., Timmins, J., Duong, M., Degirolamo, C., Rong, S., Sawyer, J., Singaraja, R., Hayden, M., Maeda, N., Rudel, L., et al. (2010). Targeted deletion of hepatocyte ABCA1 leads to very low density lipoprotein triglyceride overproduction and low density lipoprotein hypercatabolism. J Biol Chem 285, 12197-12209.
- Wang, M., Chen, L., Clark, G., Lee, Y., Stevens, R., Ilkayeva, O., Wenner, B., Bain, J., Charron, M., Newgard, C., et al. (2010). Leptin therapy in insulindeficient type I diabetes. Proc Natl Acad Sci U S A *107*, 4813-4819.
- Moon, Y., Hammer, R., and Horton, J. (2009). Deletion of ELOVL5 leads to fatty liver through activation of SREBP-1c in mice. J Lipid Res 50, 412-423.

- Okazaki, H., Goldstein, J., Brown, M., and Liang, G. (2010). LXR-SREBP-1cphospholipid transfer protein axis controls very low density lipoprotein (VLDL) particle size. J Biol Chem 285, 6801-6810.
- Foretz, M., Ancellin, N., Andreelli, F., Saintillan, Y., Grondin, P., Kahn, A., Thorens, B., Vaulont, S., and Viollet, B. (2005). Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 54, 1331-1339.