

Figure S1. Time- and fluence rate-dependence effect of red light on the elongation of wild type and NO-deficient hypocotyls. (A) Hypocotyl length was measured at the indicated times after illumination with 20 μ mol m⁻² s⁻¹ of red light. Values are the mean \pm standard error (n = 20). (B) Rate of inhibition of hypocotyl elongation by increasing fluence rates of red light was expressed after measuring hypocotyls lengths of the different genotypes by 5 days after illumination with the indicated doses of red light.

Figure S2. Similar levels of GFP in NO-treated and control untreated *35S-TAP-GFP* seedlings. *35S-TAP-GFP* seedlings were used to analyze protein levels in seedlings treated with 250 μM SNP (NO) for 2.5 h or untreated (Control). TAP-GFP was detected with anti-GFP antibodies and the levels of tubulin (TUB) are shown as loading control.

Figure S3. Relative transcript levels of genes coding for DELLA proteins in wild type and NO-deficient hypocotyls. Quantitative RT-PCR was used to measure *DELLA* transcript levels with gene specific primers and total RNA isolated from wild type Col-0 or *nia1nia2noa1-2* hypocotyls of seedlings grown under red light either untreated (Control) or treated with 1 mM of the NO donor SNP for 2 h. Values are normalized with the endogenous levels of *ACTIN2* transcript and are relative to those of Col-0 untreated samples. Values are the mean of three independent replicates ± standard error.

Fig. S3

Fig. S4

Geranylgeranyl diphosphate				
Ļ				
ent-Copalyl				
diphosphate				
· · ·				
<i>ent</i> -Kaurene				
ent Kouronoio				
GA3ox	•			
$GA_{12} \longrightarrow G_{12}$	A ₅₃			nia1 2noa1 2
	Паньспр		C01-0 + 3NF	111a 1,2110a 1 - 2
*	GA20ox1	1 ± 0.30	0.87 ± 0.14	0.01 ± 0.23
GA20ox	GA20ox1	1 ± 0.39 1 + 0 29	0.87 ± 0.14	0.94 ± 0.23
GA20ox	GA20ox1 GA20ox2	1 ± 0.39 1 ± 0.29 1 + 0.09	0.87 ± 0.14 1.03 ± 0.13 0.56 ± 0.02 **	0.94 ± 0.23 1.07 ± 0.23 3.01 ± 0.65 **
GA20ox	GA20ox1 GA20ox2 GA20ox3 GA20ox4	1 ± 0.39 1 ± 0.29 1 ± 0.09 1 ± 0.33	0.87 ± 0.14 1.03 ± 0.13 0.56 ± 0.02 ** 0.77 ± 0.18	0.94 ± 0.23 1.07 ± 0.23 3.01 ± 0.65 ** 1.53 ± 0.57
GA200X GA200X GA9 GA	GA20ox1 GA20ox2 GA20ox3 GA20ox4 20 GA20ox5	1 ± 0.39 1 ± 0.29 1 ± 0.09 1 ± 0.33 1 ± 0.06	0.87 ± 0.14 1.03 ± 0.13 0.56 ± 0.02 ** 0.77 ± 0.18 0.38 ± 0.08 **	0.94 ± 0.23 1.07 ± 0.23 $3.01 \pm 0.65 **$ 1.53 ± 0.57 $0.53 \pm 0.17 **$
GA200X GA ₉ GA	GA200x1 GA200x2 GA200x3 GA200x4 GA200x5 GA30x1	1 ± 0.39 1 ± 0.29 1 ± 0.09 1 ± 0.33 1 ± 0.06 1 ± 0.07	0.87 ± 0.14 1.03 ± 0.13 $0.56 \pm 0.02 **$ 0.77 ± 0.18 $0.38 \pm 0.08 **$ 0.98 ± 0.09	0.94 ± 0.23 1.07 ± 0.23 $3.01 \pm 0.65 **$ 1.53 ± 0.57 $0.53 \pm 0.17 **$ 1.57 ± 0.70
GA200X GA ₉ GA GA30X	GA20ox1 GA20ox2 GA20ox3 GA20ox4 GA20ox5 GA3ox1 GA3ox2	1 ± 0.39 1 ± 0.29 1 ± 0.09 1 ± 0.33 1 ± 0.06 1 ± 0.07 1 ± 0.19	0.87 ± 0.14 1.03 ± 0.13 $0.56 \pm 0.02 **$ 0.77 ± 0.18 $0.38 \pm 0.08 **$ 0.98 ± 0.09 1.01 ± 0.11	0.94 ± 0.23 1.07 ± 0.23 $3.01 \pm 0.65 **$ 1.53 ± 0.57 $0.53 \pm 0.17 **$ 1.57 ± 0.70 $0.62 \pm 0.09 *$
GA_{9} GA_{3} GA_{3} GA_{3} GA_{3}	GA200x1 GA200x2 GA200x3 GA200x4 GA200x5 GA200x5 GA200x5 GA30x1 GA30x2	1 ± 0.39 1 ± 0.29 1 ± 0.09 1 ± 0.33 1 ± 0.06 1 ± 0.07 1 ± 0.19 1 ± 0.08	0.87 ± 0.14 1.03 ± 0.13 $0.56 \pm 0.02 **$ 0.77 ± 0.18 $0.38 \pm 0.08 **$ 0.98 ± 0.09 1.01 ± 0.11 0.81 ± 0.12	0.94 ± 0.23 1.07 ± 0.23 $3.01 \pm 0.65 **$ 1.53 ± 0.57 $0.53 \pm 0.17 **$ 1.57 ± 0.70 $0.62 \pm 0.09 *$ 1.34 ± 0.04
GA_{9} GA_{9} GA_{30x} GA_{4} GA_{4}	GA200x1 GA200x2 GA200x3 GA200x4 GA200x5 GA30x1 GA30x2 A ₁ GA20x1 GA20x2	1 ± 0.39 1 ± 0.29 1 ± 0.09 1 ± 0.33 1 ± 0.06 1 ± 0.07 1 ± 0.19 1 ± 0.08 1 ± 0.22	0.87 ± 0.14 1.03 ± 0.13 $0.56 \pm 0.02 **$ 0.77 ± 0.18 $0.38 \pm 0.08 **$ 0.98 ± 0.09 1.01 ± 0.11 0.81 ± 0.12 0.96 ± 0.04	0.94 ± 0.23 1.07 ± 0.23 $3.01 \pm 0.65 **$ 1.53 ± 0.57 $0.53 \pm 0.17 **$ 1.57 ± 0.70 $0.62 \pm 0.09 *$ 1.34 ± 0.04 0.57 ± 0.22
GA_{9} GA_{9} GA_{3} GA_{4} GA_{4} GA_{2} GA_{4} GA_{2}	GA200x1 GA200x2 GA200x3 GA200x4 GA200x5 GA30x1 GA30x2 GA20x1 GA20x2 GA20x3	1 ± 0.39 1 ± 0.29 1 ± 0.09 1 ± 0.33 1 ± 0.06 1 ± 0.07 1 ± 0.19 1 ± 0.22 1 ± 0.15	0.87 ± 0.14 1.03 ± 0.13 $0.56 \pm 0.02 **$ 0.77 ± 0.18 $0.38 \pm 0.08 **$ 0.98 ± 0.09 1.01 ± 0.11 0.81 ± 0.12 0.96 ± 0.04 0.70 ± 0.08	0.94 ± 0.23 1.07 ± 0.23 3.01 ± 0.65 ** 1.53 ± 0.57 0.53 ± 0.17 ** 1.57 ± 0.70 0.62 ± 0.09 * 1.34 ± 0.04 0.57 ± 0.22 1.73 ± 1.21
GA_{9} GA_{9} GA_{3} GA_{4} GA_{4} GA_{2} GA_{2}	GA200x1 GA200x2 GA200x3 GA200x4 GA200x5 GA200x5 GA20x1 GA20x1 GA20x1 GA20x2 GA20x2 GA20x3	1 ± 0.39 1 ± 0.29 1 ± 0.09 1 ± 0.33 1 ± 0.06 1 ± 0.07 1 ± 0.19 1 ± 0.08 1 ± 0.22 1 ± 0.15 1 ± 0.18	0.87 ± 0.14 1.03 ± 0.13 $0.56 \pm 0.02 **$ 0.77 ± 0.18 $0.38 \pm 0.08 **$ 0.98 ± 0.09 1.01 ± 0.11 0.81 ± 0.12 0.96 ± 0.04 0.70 ± 0.08 0.76 ± 0.08	0.94 ± 0.23 1.07 ± 0.23 $3.01 \pm 0.65 **$ 1.53 ± 0.57 $0.53 \pm 0.17 **$ 1.57 ± 0.70 $0.62 \pm 0.09 *$ 1.34 ± 0.04 0.57 ± 0.22 1.73 ± 1.21 0.90 ± 0.27
GA_{9} GA_{4} GA_{4} GA_{20x} GA_{4} GA_{4} GA_{20x} GA_{4} GA_{20x} GA_{4} GA_{20x}	GA200x1 GA200x2 GA200x3 GA200x3 GA200x4 GA200x5 GA20x1 GA20x2 GA20x3 GA20x4 GA20x4 GA20x4 GA20x4 GA20x4 GA20x4	1 ± 0.39 1 ± 0.29 1 ± 0.09 1 ± 0.33 1 ± 0.06 1 ± 0.07 1 ± 0.19 1 ± 0.08 1 ± 0.22 1 ± 0.15 1 ± 0.18 1 ± 0.10	0.87 ± 0.14 1.03 ± 0.13 $0.56 \pm 0.02 **$ 0.77 ± 0.18 $0.38 \pm 0.08 **$ 0.98 ± 0.09 1.01 ± 0.11 0.81 ± 0.12 0.96 ± 0.04 0.70 ± 0.08 0.76 ± 0.08 1.26 ± 0.11	0.94 ± 0.23 1.07 ± 0.23 3.01 ± 0.65 ** 1.53 ± 0.57 0.53 ± 0.17 ** 1.57 ± 0.70 0.62 ± 0.09 * 1.34 ± 0.04 0.57 ± 0.22 1.73 ± 1.21 0.90 ± 0.27 0.69 ± 0.39
GA_{200x} GA_{9} GA_{9} GA_{30x} GA_{4} GA_{4} GA_{20x} GA_{34} GA_{34} GA_{34} GA_{34}	GA200x1 GA200x2 GA200x3 GA200x3 GA200x4 GA200x5 GA200x4 GA200x5 GA200x5 GA200x5 GA200x5 GA30x1 GA30x2 GA20x3 GA20x3 GA20x3 GA20x4 GA20x3 GA20x4 GA20x4 GA20x3 GA20x4	1 ± 0.39 1 ± 0.29 1 ± 0.09 1 ± 0.33 1 ± 0.06 1 ± 0.07 1 ± 0.19 1 ± 0.22 1 ± 0.22 1 ± 0.15 1 ± 0.18 1 ± 0.10 1 ± 0.57	0.87 \pm 0.14 1.03 \pm 0.13 0.56 \pm 0.02 ** 0.77 \pm 0.18 0.38 \pm 0.08 ** 0.98 \pm 0.09 1.01 \pm 0.11 0.81 \pm 0.12 0.96 \pm 0.04 0.70 \pm 0.08 1.26 \pm 0.11 0.90 \pm 0.18	0.94 ± 0.23 1.07 ± 0.23 3.01 ± 0.65 ** 1.53 ± 0.57 0.53 ± 0.17 ** 1.57 ± 0.70 0.62 ± 0.09 * 1.34 ± 0.04 0.57 ± 0.22 1.73 ± 1.21 0.90 ± 0.27 0.69 ± 0.39 1.10 ± 0.55

Figure S4. Biosynthetic pathway of gibberellins in Arabidopsis and levels of the biosynthetic and catabolic gene transcripts in hypocotyls of wild type Col-0, either treated with 1 mM of SNP as exogenous NO donor for 2 h or untreated as control, as well as in the NO-deficient *nia1nia2noa1-2* mutant seedlings grown under red light. Values are normalized with the endogenous levels of *ACTIN2* transcript and are relative to those of Col-0 untreated samples. Values are the mean of three independent replicates \pm standard error. * and ** represent statistically significant differences after Student t-test with p < 0.05 and 0.01, respectively.

Figure S5. Control experiments corresponding to Figures 1, 3, 5 and 6 performed in darkness.