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Drillcores and Age Assignments 
 
 During the SHALDRIL II cruise, pre-Quaternary strata were recovered at four sites: 
Sites NBP0602A-3, 5, 6, and 12 (1) (Main Text Fig. 1). Eocene and Oligocene age 
assignments for Holes 3C (63°50.86’/ 54°39.21’; 340 m water depth) and 12A 
(63°16.35’/52°49.50’; 442 m water depth) are based on a combination of diatom, 
calcareous nannofossil, dinoflagellate cyst, and strontium isotope data (2, 3, 4), whereas 
the age interpretations for Holes 5C (63°15.11’/52°21.91’; 506 m water depth), 5D 
(63°15.09’/52°21.94’; 506 m water depth), 6C (63°20.03’/52°22.04’; 532 m water depth), 
and 6D (63°19.75/52°22.04’; 532 m water depth) rely solely on diatom biostratigraphy 
(2) (Table S1). A brief summary of the age assignments for each of the pre-Quaternary 
sections is given below. The placement of the assigned age intervals within the 
geomagnetic polarity timescale and key diatom biostratigraphic datums are shown in Fig. 
S1. These interpreted age ranges represent the narrowest/shortest intervals that can be 
constrained by biostratigraphy, not the total duration of deposition. Further discussion of 
the age assignments, along with diatom and calcareous nannofossil occurrence data and 
description of the strontium isotope results, is presented in Bohaty et al. (2). All ages are 
calibrated to the Gradstein et al. (5) timescale, and core nomenclature and terminology 
follow that described in the initial reports for the SHALDRIL project (1, 6). 
 
Hole NBP0602A-3C 
 
 Hole 3C was drilled in the northern part of James Ross Basin in the Weddell Sea 
(63°50.86'S, 54°39.21'W), approximately 125 km to northeast of James Ross Island and 
Seymour Island (Main Text Fig. 1). This borehole is composed of a series of 8 cores 
drilled to a depth of ~20 meters below seafloor (mbsf) with an average recovery of ~35% 
(1). The core units are consecutively named Core 3C-1Ra at the top of the borehole to 
Core 3C-8Ra at the base. 
 
 Age assignments for Hole 3C are primarily based on diatom biostratigraphy, with 
supporting information provided by calcareous nannofossil and dinoflagellate cyst 
biostratigraphy and strontium isotope dating (2, 4). A very thin interval containing diatom 
assemblages of Late Pleistocene–Holocene age was recovered at the top of Hole 3C (3.00 
to 3.15 mbsf). Paleogene strata were penetrated at shallow depths below this level, as 
indicated by the presence of characteristic Eocene diatoms, calcareous nannofossils, and 
dinoflagellate cysts in the lower portion of Core 3C-1Ra (3.55 mbsf). The 
biostratigraphic ranges of several diatom and dinoflagellate cyst taxa indicate a late 
Eocene age (~37 to 34.0 Ma) for the section (2) (Table S1; Fig. S1). One strontium 
isotope-based age estimate from Core 3C-5Ra (11.56 mbsf) provides support for this 
interpretation, indicating an age of 35.9±1.1 Ma. The sediments from this hole mostly 
consist of muddy to very fine sand that varies in color from greenish black in the upper 
portion of the hole (0–7.5 mbsf) to very dark greenish gray in the lower portion (7.5–~20 
mbsf) of the core (1). It is assumed that the recovered Eocene section is relatively 
continuous, but a minor hiatus might be present at the lithological change ~7.5 mbsf (4). 
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Table S1, next page. Biostratigraphic datums used to constrain ages of pre-Quaternary 
strata. References 4 and 8-30 are cited in this table.  Hj = Hajós (1976); GC = Gombos 
and Ciesielski (1983); P = Poore et al. (1983); W = Wise (1983); Hr = Harwood (1989); 
GB = Gersonde and Burckle (1990); BB = Baldauf and Barron (1991); HM = Harwood 
and Maruyama (1992); Berggren et al. (1995); Sc = Scherer et al. (2000); Wi = Wilson et 
al. (2000); HB = Harwood and Bohaty (2001); CG = Censarek and Gersonde (2002); W 
= Wilson et al. (2002); WI = Winter and Iwai (2002); ZG = Zielinski and Gersonde 
(2002); Bo = Bohaty et al. (2003); R = Roberts et al. (2003); WB = Whitehead and 
Bohaty (2003); B = Barron et al. (2004); WB = Williams et al. (2004); O = Olney et al. 
(2007); a Gradstein et al. (2004); b Cody et al. (2008); average range model. 
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Figure S1, this and previous page.  Key biostratigraphic datums and age assignments 
for drill cores.  



 6 

Hole NBP0602A-12A 
 
 Hole 12A was drilled on the northeastern edge of Joinville Plateau, Weddell Sea 
(63°16.35'S, 52°49.50'W), approximately 115 km to the east of Joinville Island (Main 
Text Fig. 1). This borehole is composed of a series of 3 cores (Cores 12A-1Ra, -2Ra and - 
3Ra) drilled to depth of 7.2 mbsf, with an average recovery of ~60% (1). 
 
 The thin, uppermost interval of Hole 12A (0.0–0.13 mbsf) contains a modern 
(extant) diatom assemblage, biostratigraphically constraining the age of the section to 
younger than 140 Ka (2). Below this level, between 0.15 mbsf to the bottom of the hole at 
6.0 mbsf, the diatom assemblage contains several age-diagnostic taxa, including 
Cavitatus jouseanus, C. rectus, Kisseleviella cicatricata, and K. tricoronata. The 
combined ranges of these taxa provide an age estimate of 28.4 to 23.3 Ma for the lower 
section recovered in Hole 12A (Table S1; Fig. S1). The calcareous nannofossil 
assemblage is of limited diversity, but the presence of Dictyococcites bisecta supports an 
age assignment of late Oligocene or older (≥~22.8 Ma) for the section (2). A single 
strontium isotope age from a bivalve shell recovered in Core 12A-2Ra (4.96 mbsf) also 
supports the biostratigraphic age interpretation, indicating an age of 27.2±0.6 Ma. 
 
Holes NBP0602A-5C and 5D 
 
 Holes 5C and 5D were drilled on the northeastern edge of the Joinville Plateau, 
Weddell Sea (63°15.09'S, 52°21.94'W), approximately 135 km to the east of Joinville 
Island (Main Text Fig. 1). Overlapping intervals were drilled in the two holes. In Hole 5C, 
a highly-disturbed sample was recovered between 8.5 and 11.97 mbsf. Hole 5D was more 
successful, with a series of 13 cores (Cores 5D-1Ra to 13Ra) to a depth of 31.4 m. The 
average core recovery in Hole 5D is ~40% (1). 
 
 Age assignments for Holes 5C and 5D are based solely on diatom biostratigraphy. 
The upper part of Core 5D-1Ra contains a Late Pleistocene–Holocene assemblage, which 
constrains the age of this unit to younger than 140 Ka (2). A hiatus is identified at the 
base of Core 5D-1Ra. The interval between Sample 5D-1Ra-1, 95 cm (8.95 mbsf) and 
Sample 5D-5Ra-1, 25 cm (16.25 mbsf) is assigned an early Pliocene age, with an 
interpreted age of 5.1 to 4.3 Ma (Table S1; Fig. S1). The poorly-consolidated, poorly- 
recovered core from Hole 5C (Core 5C-2Ra) is also included in this interval. Another 
hiatus is identified between Cores 5D-5Ra and -6Ra (at ~18 mbsf), and Cores 5D-6Ra 

through -13Ra (18.80 to 30.36 mbsf) are assigned a middle Miocene age. The combined 
ranges of several diatom taxa constrain the age of the Miocene section recovered in Hole 
5D to the interval between 12.8 and 11.7 Ma (2) (Table S1; Fig. S1). The presence of the 
diatom Denticulopsis ovata within Core 5D-6Ra may allow further separation of the 
Miocene section into two subunits with different ages. The first occurrence datum of D. 
	  
ovata is calibrated at 12.1 Ma; therefore, Core 5D-6Ra (18.80 to 19.05 mbsf) is assigned 
an age between 12.1 and 11.7 Ma, and Cores 5D-7Ra through -13Ra (22.00 to 30.36 mbsf) 
are assigned an age between 12.8 and 12.1 Ma (2) (Table S1; Fig. S1). 
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Holes NBP0602A-6C and 6D 
 
 Holes 6C and 6D were drilled on the northeastern edge of the Joinville Plateau, 
Weddell Sea (63°20.27'S, 52°22.03'W), approximately 135 km to the east of Joinville 
Island and immediately south of Site 5 (Main Text Fig. 1). Overlapping sections were 
drilled in the two holes. Hole 6C penetrated to a depth of 20.5 mbsf with an average 
recovery of ~30%, and Hole 6D reached a depth of ~10 mbsf with an average recovery of 
~45% (1). A series of 9 cores were drilled in Hole 6C (Cores 6C-1Ra to -9Ra), and 3 cores 
were drilled in Hole 6D (Cores 6D-1Ra to -3Ra). 
 
 The ages for Holes 6C and 6D are based on diatom biostratigraphy. Assemblages 
characteristic of the lower Pliocene are present in all cores recovered in these holes. 
Cores 6C-2Ra to -6Ra (~4.0 to 15.0 mbsf) and Cores 6D-1Ra to -3Ra (~5.0 to 10.0 mbsf) 
are assigned a well-constrained age of ~4.3 to 3.8 Ma (2) (Table S1; Fig. S1). In the 
lowermost section of Hole 6C (Cores 6C-8Ra and -9Ra, ~18.0 to 20.4 mbsf), low diatom 
abundance and poor preservation precludes precise biostratigraphic age control. The 
section recovered in Holes 6C and 6D, however, is interpreted to lie ~200 m 
stratigraphically above the lower Pliocene section recovered in Holes 5C and 5D (7). 
Therefore, age of the lowermost section of Hole 6C is constrained to an age younger than 
~5.1 Ma (Fig. S1). 
 
 
Sedimentology 
 
 Each of the drill cores was run through a GeoTek Multi Sensor Core Logger 
(MSCL) immediately after equilibration to room temperature following recovery from 
the sea floor and sectioning into 1 m lengths. MSCL data collection included magnetic 
susceptibility and P-wave velocity data. Gamma-ray density and electrical resistivity data 
were also collected, but did not contribute to interpretations. The magnetic susceptibility 
data were used as a proxy for the amount of terrigenous material compared to biogenic 
material in the cores. P-wave velocity was used in correlating the longer cores to seismic 
records. 
 
 Following the collection of the MSCL data, the cores were split and described on 
board ship. Visual lithology was described at sea including Munsell color code of the 
sediment color, smear slide description of the <250 µm fraction, and description of 
compositional, textural, and any other observed sedimentologic characteristics. Any 
lithologic boundaries were noted. A hand-held ER probe was then used as calibration of 
the MSCL ER measurements. 
 
 After the cruise, all sediment cores were transported in D-tubes to the Antarctic 
Research Facility at Florida State University where they are archived. Once there, the 
cores were x-rayed and the radiographs were used to produce counts of pebbles. X-rays 
were interpreted in Adobe Photoshop with the contrast adjusted for each image. Pebbles 
greater than 4 mm were counted and the reported value is the number counted per 5 cm 
of core. 
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 Grain size analysis was conducted on a Malvern laser particle size analysis system 
at Rice University. Approximately 5 cc of sample was allowed to soak in de-ionized 
water with sodium hexametaphosphate as a dispersant to break up clasts and flocculated 
clay particles before samples were added to a magnetic stirrer. Sample was then added to 
the LPSA machine using a hand-held pipette. Duplicate measurements were made both of 
the same aliquot and of additional aliquots of the same sample to ensure consistency and 
lack of bias in sampling. 
 
 X-ray diffraction sample processing and analyses followed standard procedures 
(31). Bulk sediment samples were crushed, treated with 10% acetic acid and 5% H2O2 

solution in order to remove carbonate and organic matter, respectively. The clay fraction 
(<2 µm) was separated in settling tubes. Approximately 40 mg of the clay fraction was 
dispersed and mixed with an internal standard consisting of a 0.4% MoS2 suspension. The 
samples were mounted as texturally oriented aggregates on aluminium tiles and solvated 
with ethylene-glycol vapour at 60°C. The samples were then x-rayed (Rigaku Miniflex, 
CoKa radiation, 30 kV, 15 mA) in the range 3-40 °2θ with a scan speed of 0.02 °2θ/s. 
Additionally, the range 27.5–30.6 °2θ was measured with a step size of 0.01 °2θ in order 
to resolve more clearly the (002) kaolinite peak and the (004) chlorite peak. 
 
 Diffractograms were interpreted using the “MacDiff” software (32). The main clay 
mineral groups illite, chlorite, kaolinite and smectite are noted by their basal reflections at 
10 and 5 Å (illite), 14.2, 7.1, 4.72 and 3.54 Å (chlorite), 7.1 and 3.58 Å (kaolinite), and ca 
16.5 Å (smectite, after glycolation), after adjustment of the diffractograms using the 
MoS2 peak at 6.15 Å. For semi-quantitative evaluations of the mineral assemblages, 
empirically estimated weighting factors were used on the integrated peak areas of the 
individual clay mineral reflections (33, 34, 35). The crystallinity of smectite and illite is 
expressed as the integral breadth (IB, D°2θ) of the 16.5 Å and 10 Å peaks, respectively. 
High values indicate poor crystallinities, whereas low values indicate good crystallinities. 
The composition of the illites can be estimated from the 5/10-Å peak area ratios (>0.4 for 
muscovite-like illites, <0.15 for biotite-like illites; 36) and the d-values of the (001) illite 
peak (<10.00 Å for muscovite, >10.10 Å for biotite). 
 
 Results of the lithologic and clay mineralogy analyses are given in Figure S2 and 
Table S2. 
 
 
Grain Shape (Roughness) 
 
 We conducted Fourier Shape analysis on quartz grains from a representative set of 
samples from each drillcore. For this work, we used the 75–125 µm size fraction, and ~20 
to 400 grains were analyzed from each sample. After chemical separation, the grains 
were photographed using a 10x objective on a petrographic microscope. Grain outlines 
were extracted from the grain images using a script run on ImageJ, a free image analysis 
software package. The grain outlines were used to calculate the Fourier Coefficients for  
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Figure S2, this and previous page. Lithologic logs for drill cores including multi-sensor 
core logger data. 
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Sample % Smectite % Il l ite % Chlorite % Kaolinite Stratigraphy 
3C-1, 16 cm 28.1 34.1 21.4 16.4 Quaternary 
3C-1, 81 cm 28.3 33.8 22.8 15.1 Late Eocene 
3C-2, 41 cm 28.1 35.5 19.1 17.3 Late Eocene 
3C-3, 81 cm 26.4 35.2 16.5 21.9 Late Eocene 
3C-4, 81 cm 35.7 32.1 12.8 19.4 Late Eocene 
3C-5, 81 cm 37.1 33.4 11.3 18.2 Late Eocene 
3C-6, 81 cm 32.0 31.9 13.4 22.7 Late Eocene 
3C-7, 51 cm 33.6 35.3 12.5 18.6 Late Eocene 
5D-1, 41 cm 26.1 44.4 19.1 10.4 Quaternary 
5D-1, 91 cm 25.4 48.6 19.1 6.8 Early Pliocene 
5D-2, 21 cm 25.4 48.4 20.2 6.0 Early Pliocene 
5D-3, 71 cm 26.9 47.6 19.6 5.9 Early Pliocene 
5D-4, 111 cm 24.2 51.7 17.8 6.2 Early Pliocene 
5D-5, 41 cm 15.6 51.6 24.9 7.9 Early Pliocene 
5D-6, 71 cm 19.4 57.2 17.8 5.5 Middle Miocene 
5D-7, 11 cm 22.5 54.6 17.0 6.0 Middle Miocene 
5D-8, 21 cm 22.2 52.7 17.2 8.0 Middle Miocene 
5D-10, 61 cm 23.8 51.6 17.2 7.3 Middle Miocene 
5D-11, 121 cm 18.8 54.5 19.3 7.4 Middle Miocene 
5D-11, 261 cm 22.1 51.0 18.7 8.2 Middle Miocene 
5D-12, 71 cm 21.8 53.4 17.4 7.4 Middle Miocene 
5D-13, 61 cm 22.0 55.5 16.8 5.7 Middle Miocene 
6C-2, 41 cm 38.0 42.4 13.3 6.3 Early Pliocene 
6C-4, 101 cm 22.4 49.7 20.0 7.9 Early Pliocene 
6C-5, 71 cm 35.4 41.3 16.0 7.3 Early Pliocene 
6C-6, 81 cm 39.8 39.5 14.8 5.9 Early Pliocene 
6C-8, 91 cm 45.3 36.8 12.0 5.9 Early Pliocene 
6C-9, 21 cm 35.4 42.7 17.1 4.8 Early Pliocene 
6D-2, 71 cm 34.7 44.9 14.7 5.7 Early Pliocene 
6D-3, 61 cm 41.2 36.0 15.0 7.8 Early Pliocene 
12A-1, 21 cm 10.9 66.7 17.9 4.5 Quaternary 
12A-1, 81 cm 27.3 53.1 15.1 4.5 Late Oligocene 
12A-2, 61 cm 22.0 54.4 18.5 5.0 Late Oligocene 
12A-2, 121 cm 23.1 51.6 19.3 6.0 Late Oligocene 
12A-2, 221 cm 20.7 54.0 19.3 5.9 Late Oligocene 
12A-2, 261 cm 21.0 55.1 18.4 5.5 Late Oligocene 

 
 
Table S2. Clay mineralogical data. 
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harmonics 1-20 using a Fortran code based on the equations of Ehrlrich and Weinberg 
(37). 
 
 In the interpretation of differences in grain shape, it is important to keep in mind 
that the grain shape is also influenced by sediment provenance (38) and sediment 
transport distance (39). Given the depth of the cores and distance from land, plus the 
unsorted nature of the sediments, we assume that sand size material is transported to the 
sites by icebergs. Therefore, the changes in grain shape most likely truly reflect changes 
in degree of glaciation. 
 
 Although direct comparisons between data collected from different regions and 
from different sediment size fractions are problematic (40, 41), a comparison with similar 
studies does allow the placement our roughness coefficient results into a 
paleoenvironmental context. Dowesdwell et al. (42) sampled a transect of environments 
from glacial to glacial marine environments from Baffin Island, Canada. They found that 
that the 150–500 micron grains imaged via SEM analysis from glacial deposits had 
higher roughness coefficients than the same sized grains from marine sediments. Again, 
caution should be made in trying to compare values; Dowesdwell et al. (42) found glacial 
deposits to have roughness coefficients from harmonics 16-20 of 0.0055-0.0069 and 
glacial marine deposits to have roughness coefficients of 0.004-0.0049. These values 
have similar trends as observed in our dataset. 
 
 Grain shape results are presented in Table S3. 
 
 
Grain Surface Texture 
 
 We examined in detail a total of ten sand grains per sample from 18 stratigraphic 
intervals for surface morphological characterization. Samples were acquired from drill 
core and piston cores as part of the SHALDRIL program as described above. Additional 
samples from Seymour Island were generously provided by the United States Polar Rock 
Repository (D6-03, D6-05, D6-07). 
 
 In all sample preparation steps, we took great care to preserve sample morphology 
and avoid generating any surface features (43). We sieved samples at 63μm and then 
made splits to reduce sample size with representative grain populations. All quartz grains 
in the final split were identified and mounted for analysis. Specimens were then coated 
with approximately 20 nm of a conductive material. Grains were examined using a FEI 
Quanta 400 high-resolution field emission scanning electron microscope in high vacuum 
mode. We verified the composition of each grain as pure SiO2 with Energy Dispersive X-
Ray Spectroscopy. 
 
 Textural features of the quartz grains were identified based on the criteria and 
examples from Mahaney (44). Fifteen individual microtextural features were recorded as 
not-present, low abundance, medium abundance, or high abundance for each individual 



 13 

 

Sample Avg. Rc 16-20 Standard Dev (16-20)
3C-1_13-14G75toG125 !"!!#$%&& !"!!!'(#)
)*+(,)%+-!.#$/0.('$ !"!!#'$-# !"!!!(&)(
)*+),&+%.#$/0.('$ !"!!#-)#$ !"!!!(%1%
)*+),((-+(($.#$/0.('$ !"!!#'&-$ !"!!!(1(#
)*+#,-#+-&.#$/0.('$ !"!!&!(-% !"!!!')'(
$2+(,(!+((.#$/0.('$ !"!!#!-$1 !"!!!($&)
$2+','1+'#.#$/0.('$ !"!!-#(-( !"!!!($$#
$2+),-#+-&.#$/0.('$ !"!!$$&'( !"!!!'#$
$2+-,'#+'&.#$/0.('$ !"!!$1$&# !"!!!'$-'
$2+$,'#+'&.#$/0.('$ !"!!$$#1- !"!!!()##
$2+1,(+'.#$/0.('$ !"!!1(%)% !"!!!(-(-
$2+1,&)+&-.#$/0.('$ !"!!1)-&# !"!!!()''
$2+#,-+$.#$/0.('$ !"!!1-$(' !"!!!''!'
$2+(!,--+-$.#$/0.('$ !"!!1)' !"!!!('1&
$2+((,$+1.#$/0.('$ !"!!1$%!) !"!!!'(--
$2+(),#!+#(.#$/0.('$ !"!!1$1&1 !"!!!(-#
1*+',1(+1'.#$/0.('$ !"!!$$-' !"!!!'1-
1*+1,-1+-#.#$/0.('$ !"!!1)))& !"!!!(%)(
1*+&,(''+(').#$/0.('$ !"!!$%$#- !"!!!)''-
12+(,()+(-.#$/0.('$ !"!!$&1!& !"!!!)!&
12+',!+(.#$/0.('$ !"!!$'1#- !"!!!$((1
12+),(''+(').#$/0.('$ !"!!$%&!# !"!!!'-)(
#3+(,'.#$/0.('$ !"!!11!%' !"!!!'''%
('3+(,-+$.#$/0.('$ !"!!1!&$) !"!!!'#!$
('3+(,)#+)&.#$/0.('$ !"!!$%(%% !"!!!(-11
('3+',1#+1&..#$/0.('$ !"!!$%)&& !"!!!(1(&
('3+',''$+''1.#$/0.('$ !"!!$%!(- !"!!!'(($

 
 
Table S3. Mean roughness coefficient of quartz sand grains for Fourier shape harmonics 
16-20 (37). Harmonics 16-20 are thought to describe the angularity of the grain rather 
than its form and thus are best at reflecting depositional processes (40, 42). Outside of the 
Eocene section, in general, rougher grains represent a greater importance of glacial 
processes. See supplementary information text for a more detailed discussion on grain 
roughness. 
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grain for ten grains per sample. The grain surface texture column shown in figure 3 (main 
text) is an average occurrence of glacially derived microtextures plotted on a scale of zero 
abundance, low abundance (<33%), medium abundance (33%-67%) and high abundance 
(67%-100%). 
 
 We focused on the glacially-formed microtexture category as established by Sweet 
and Soreghan (45). The glacially derived, sustained high stress features consist of 
crescentic gouges, straight grooves, curved grooves, and deep troughs. Examples of some 
of the most diagnostic features are illustrated in Figure S3. The average occurrence of 
glacially derived microtextures was established by calculating the mean of the four 
glacially-derived microtextures over each stratigraphic interval. 
 
 
Palynology 
 
 Seventy-two samples were collected to conduct detailed palynological analysis of 
the SHALDRIL cores. Twenty samples were collected from Hole 3C, twelve samples 
were collected from Hole 12A, twenty-two samples were collected from Hole 5D, and 
sixteen samples were collected from Holes 6C and 6D. 
 
 All samples from this study were processed via a standard palynological technique 
suited for Antarctic sediments. For each sample, about 10 g of dried sediment was 
weighed to allow calculation of palynomorph concentration per gram of dried sediment. 
The sediment was also spiked with a known quantity of Lycopodium spores to allow 
computation of the absolute abundance of palynomorphs in the sample. Acid soluble 
minerals present in the sediment were digested in HCl and HF acid to remove carbonates 
and silicates. The palynomorphs were then concentrated by filtration through a 10-µm 
mesh sieve. The entire residue obtained was mounted on microscopic slides for analysis. 
Analysis was conducted under 60⋅ oil immersion objective with a BX41 Olympus 
microscope. For samples with sufficient palynomorph abundance, a minimum of 300 
palynomorphs were tabulated per sample. For samples with low abundance, the entire 
residue was tabulated. A database of all palynomorphs recovered was prepared and key 
species were photographically documented using QCapture software. 
 
 The palynological results are presented in Table S4. Additional details of the 
palynological studies are reported in Warny and Askin (2, 3). 
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Figure S3. Scanning Electron Microscope (SEM) images of sand grains from samples 
taken at different intervals within the sampled section and illustrating glacial versus non- 
glacial surface features. A) Grain from Pleistocene till illustrating sustained high-stress 
microtextures indicative of glacial erosion and transport, including curved grooves (cgv), 
straight grooves (sgv), crescentic gouges (cgg), subparallel linear fractures (slf) and deep 
troughs (dt). B) Grain from Pleistocene till with rounded edges (re), abundant curved 
grooves (cgv), straight grooves (sgv) and arc shaped steps (as). C) Sub-rounded, highly 
weathered grain from the early Pliocene section, with rounded edges (re), straight 
grooves (sgv) and cressentic gouges (cgg). D) Grain from middle Miocene section with 
weathered surface (ws), faint dissolution etching (de) and rounded edges (re) 
superimposed on older cresentic gouges (cgg), curved grooves (cgv) and arc shaped steps 
(as). E) Fresh and angular grain from the late Eocene with angular edges (ae) and little/no 
surface weathering. There are numerous fracture faces (ff), linear steps (ls), crescentic 
gouges (cgg), straight grooves (sgv) and mechanically upturned plates (mp). F) Rounded 
grain from the Eocene La Meseta Formation, Seymour Island, Antarctica. The grain has 
rounded edges (re) and a weathered surface (ws) and features include crescentic gouges 
(cgg) and v-shaped impact pits (vp). 
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Table S4, next page. Detailed results from pollen and spore work. 
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CO
RE BOTTOM 

DEPTH
Nothofagidites 

sp.fusca gp.
Nothofagidites 

brassii gp.
Nothofagidites 
menziesii gp.

Conifer 
pollen Proteaceae

Other 
angiosperm 

pollen
Cryptogam 

spores
PLIOCENE
6C-2 58 0 0 0 0 0 0 0
6C-2 114 0 0 0 0 0 0 0
6D-1 11 0 0 0 0 0 0 0
6D-2 10 0 0 0 0 0 0 0
6D-2 49 0 0 0 0 0 0 0
6D-2 92 0 0 0 0 0 0 0
6D-3 5 0 0 0 0 0 0 0
6D-3 40 0 0 0 0 0 0 0
6D-3 73 0 0 0 0 0 0 0
6D-3 127 0 0 0 0 0 0 0
6C-4 39 0 0 0 0 0 2 0
6C-4 131 0 0 0 0 0 0 0
6C-5 25 0 0 0 0 0 0 0
6C-6 70 0 0 0 0 0 0 0
6C-7 96 0 0 0 0 0 0 0
6C-8 56 0 0 0 0 0 0 0
6C-8 124 0 0 0 0 0 0 0
6C-9 32 0 0 0 0 0 0 0
5D-1 42 0 0 0 0 0 0 0
5D-2 18 0 0 0 0 0 0 0
5D-3 45 0 0 0 0 0 0 0
5D-4 13 0 0 0 0 0 0 0
5D-4 65 0 0 0 0 0 0 0
5D-4 123 0 0 0 0 0 0 0
5D-5 24 0 0 0 0 0 0 0
5D-6 12 0 0 0 0 0 0 0
5D-6 65 0 0 0 0 0 0 0
MIOCENE
5D-7 29 7 0 0 1 0 1 1

39 9 1 0 5 1 1 1
5D-9 45 13 0 0 3 1 0 0
5D-10 14 5 0 0 1 0 1 0

88 11 0 0 3 2 0 0
173 6 0 0 2 0 1 1

5D-11 66 10 0 0 2 1 1 1
153 4 0 0 3 1 1 1
232 12 0 0 4 1 4 0
315 16 0 0 8 1 3 1

5D-12 11 4 1 0 1 0 1 1
85 12 1 1 6 0 4 3

5D-13 65 8 1 0 9 1 1 2
OLIGOCENE
12A-1 32 10 0 0 3 1 2 1

64 13 0 0 8 1 3 1
97 25 0 1 12 1 3 3

12A-2 35 21 0 0 19 1 5 3
71 30 1 0 13 2 8 3
105 24 0 1 16 1 7 2
146 28 2 0 17 1 6 2
173 20 1 1 26 1 6 2
204 32 2 1 19 4 5 2
234 20 1 0 29 2 8 4
264 17 1 0 12 1 4 3

EOCENE
3C-1 56 47 1 0 7 0 6 3

90 64 2 1 14 1 7 4
3C-2 12 59 0 0 9 2 5 4

31 44 0 0 20 1 3 5
3C-3 13 75 0 1 14 1 4 2

61 69 0 0 15 0 5 5
97 76 1 1 12 1 5 1

3C-4 12 69 1 1 18 1 4 2
51 69 3 0 15 4 1 6
87 65 3 0 17 2 2 4

3C-5 12 72 2 0 15 1 2 3
56 70 0 1 19 0 4 1
85 70 2 1 16 2 2 4

3C-6 12 64 2 1 20 2 4 3
51 76 3 1 12 1 1 4
85 79 0 0 14 1 3 1

3C-7 8 72 3 2 16 1 2 3
31 73 1 1 15 1 7 1
59 74 5 3 12 1 2 2
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Tectonics 
	  

A	  review	  of	  regional	  tectonics	  is	  provided	  here	  for	  context	  of	  the	  glacial	  and	  
biologic	  changes	  documented	  in	  this	  study.	  	  Figure	  S4	  shows	  a	  seismic	  line	  collected	  
for	  drill	  core	  location.	  	  Table	  S5	  lists	  tectonic	  events	  by	  age.	  	  	  
	  
	  

	  
	  
Figure S4. Seismic profile NPB06-10 across the South Orkney Plateau showing 
prominent unconformity interpreted as recording initial ice sheet advance across the 
plateau prior to the early Pliocene. See Main Text Figure 1 for profile location. 
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Table S5, next two pages. Tectonic and stratigraphic events related to the development 
of the Antarctic Circumpolar Current. References cited are numbers 46 through 75. 
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Late Jurassic-Early Cretaceous: Earliest age suggested for Central Scotia Sea 
floor by Eagles (2010).  

- Late Jurassic-Early Cretaceous: Age of initiation of stretching between 
Australia and East Antarctica, ~153 Ma (Wilcox and Stagg, 1990) with 
initiation of oceanic sea floor spreading by ~95 Ma (Tikku and Cande, 2000) 
although Cande and Stock (2005) now put oldest identified seafloor spreading 
anomaly as C33y (79 Ma). 

- ca. 58-49 Ma: extensional opening of Rio Bueno-De Agostini depocenters near 
Staten Island/Tierra del Fuego believed by Ghiglione et al. (2008) to be 
indication of initial extension in development of Drake Passage. 

- ca. 56-54 Ma: Last mammal dispersal from South America to the Antarctic 
Peninsula (Woodburne and Zinsmeister, 1984; Reguero and Marenssi, 2010), 
evidence of initiation of shallow seaway in future Drake Passage. 

- prior to Early Eocene, 56 Ma: South Tasman Saddle, a100+ km wide, 2 km 
deep seaway between Tasmania and the South Tasman Rise, clears East 
Antarctica (Lawver et al., in press). 

- ca. 45-35 Ma: Onset of rapid cooling, ~48 Ma with exhumation of the Fuegian 
(southernmost) Andes beginning no later than 45 Ma (Gombesi et al., 2009). 

- ca. 41 Ma: Nd-isotopes of fossil fish teeth indicate evidence of possible 
penetration of Pacific-derived seawater through Drake Passage into the Atlantic 
sector of Southern Ocean (Scher and Martin, 2006).  

- ca. 41-34.7 Ma: age of seafloor-spreading in Dove Basin based on marine 
magnetic anomaly identifications and depth-to-age models (Eagles et al., 2006) 

- ca. 40-29.7 Ma: stretching of Powell Basin estimated to have begun by 40 Ma 
with sea floor spreading magnetic anomalies identified as chrons C11 to C6AA 
(29.8-21.8 Ma) according to Eagles & Livermore, 2002. 

- ca. 40 Ma: age of initial deep water passage between South Tasman Rise and 
East Antarctica (Lawver et al., in press) 

- ca. 39 Ma: sediment provenance shift in the eastern Magallanes basin indicating 
rapid exhumation of Cordillera Darwin complex (Barbeau et al., 2009).  

- ca. 36-33.5 Ma: alternating dominances of cool-water nannofossil taxa at Maude 
Rise, ODP Site 689 (36.41-33.54 Ma), synchronous with Kerguelen, ODP Site 
744 (35.80-33.54 Ma) found by Persico and Villa (2004). 

- ca. 34 Ma: age of opening between remnant of Ninety East Ridge and Kerguelen 
Plateau to develop continuous passage directed to the southeast (Lawver et al., 
in press) 
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- ca. 34-30 Ma: Preferred Protector Basin seafloor spreading model of Eagles et 
al. (2006), although they offer a second, older model with age of seafloor 
spreading based on magnetic anomaly identification and depth-to-age of ~48.5-
41 Ma. Galindo-Zaldivar et al. (2006) suggest Protector Basin models based on 
magnetic anomaly identifications of 23.8-20.1 Ma, 22-17.6 Ma, and 17.4-13.8 
Ma. Hill and Barker (1980) modeled their marine magnetic anomalies as chrons 
C5D to C5AA (17.5 Ma to 13.1 Ma). 

- ca. 33-30 Ma: reduced sedimentation at ODP Site 1090, 33.4-30.2 Ma and a 
hiatus around 32 Ma attributed to opening of Drake Passage and ending of opal 
pulse at ~33 Ma (Diekmann et al., 2004). 

- 32.8 Ma: permanent change in Barium concentration record at ODP Site 1090 in 
the southeastern Atlantic is used as indication of initial deep-water circulation 
resulting from opening of Drake Passage (Latimer and Filippelli, 2002). 

-  ca. 31-30 Ma: Initiation of ACC based on depositional hiatus at Maud Rise Site, 
ODP 690C, which is coeval with hiatuses seen on two Kerguelen Plateau sites, 
744A and 748B and with time of decrease in sedimentation rate at the shallower 
ODP Site 689 on Maud Rise (Florindo and Roberts, 2005). 

- 29.7-21.8 Ma: seafloor-spreading (drift phase) of Powell Basin opening (Eagles 
and Livermore, 2002). 

- ca. 29 Ma: oldest proposed age for West Scotia Sea oceanic crust Chron C10 
(LaBrecque and Rabinowitz, 1977) although Barker and Burrell (1977) and 
Eagles et al. (2005) only show C8 (~26.5 Ma) as the oldest and Eagles et al. 
(2005) indicate a possible C9, Lodolo et al. (1997) show a possible C9 and C10 
and Lodolo et al. (2006) show definite C10 (28.4 Ma) and C9 in the western 
sector of the West Scotia Sea. 

- >26 Ma: age of Central Scotia Sea (Eagles et al., 2005), although Hill and 
Barker (1980) identified the east-west trending magnetic anomalies as either 
chrons C12 to C6C (30.9 to 24.6 Ma) or chrons C6C to C4A (24 Ma to 9 Ma). 

- ca. 26 Ma: oldest consistently identifiable magnetic anomaly (chron C8) in West 
Scotia Sea (Barker and Burrell, 1977; Eagles et al., 2005). 

- ca. 23.9 Ma: Grain size change found at ODP Site 1170 (South Tasman Rise) 
indicates initiation of ACC (Pfuhl and McCave, 2005). 

- ca. 15 Ma: oldest consistently identifiable magnetic anomaly (Chron C5B) in 
East Scotia Sea (Larter et al., 2003), although Livermore (2003) speculates that 
there may be older anomalies, perhaps as old as C6A (~21 Ma). 

- ca. 15 Ma: time of initial collision of Australia with Southeast Asia (Lee and 
Lawver, 1995) and reduction of Circum-tropical circulation through the 
Indonesian Seaway. 
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