Supporting Information

Ding et al. 10.1073/pnas.1100901108

Fig. S1. Characterization of anti-amyloid β (A β) 40/42 antibody targeting to the C-terminal region of A β peptide. (A and B) Antibody binding to either A β peptide 40 (A β 40) or 42 (A β 42) was shown by peptide-specific ELISA with serial dilution of a panel of antibodies: A β 42-specific antibody in blue, A β 40-specific antibody in green, A β 40/42 bispecific antibody in red, and a nonspecific antibody control in yellow. (C and D) Localization of the minimal epitope for binding of the A β 40/42 antibody was determined by ELISA using a panel of partially overlapping peptides. +++, strongest signal on ELISA (OD > 2); ++, moderate signal (OD = 1–2); +, moderate signal (OD = 1–2); +, moderate signal (OD = 1–2); +, moderate signal on signal. The underlined peptide in C indicated the minimal required sequence for antibody binding. The relative location of the epitope (underlined in red) within the full-length human amyloid precursor protein (APP) is illustrated in *D*. (*E* and *F*) Cell surface binding of N-terminal antibody, 6E10 (*E*, blue curve), to human APP (hAPP)-transfected 293 cells was significantly above that of a secondary only control (*F*, red curve).

Fig. 52. Visual function is protected in anti-A β 40/42-treated apolipoprotein E (*APOE4*) high-fat, cholesterol-enriched diet (HFC) mice. (*A* and *B*) Scotopic electroretinogram (ERG) flash responses. (*A*) Stimulus response curves of b-wave amplitudes. Baseline ERGs obtained from normal *APOE4*-normal diet (ND) controls (black, ND) and affected *APOE4*-HFC vehicle-treated controls (green, HFC). b-Wave amplitudes were fully preserved in *APOE4*-HFC mice that received weekly 3 mg/kg i.p. anti-A β 40/42 antibody injections (red, HFC-anti A β 40/42), with no significant difference from *APOE4*-ND controls. b-Waves in mice treated with anti-A β 40 antibody (olive green, HFC-anti A β 40) during HFC diet exposure are partially protected, which was found previously in a pilot study (1), whereas in the anti-A β 42-treated mice (blue, HFC-anti A β 40), there did not seem to be protection from visual function loss compared with normal *APOE4*-ND controls (black) and affected *APOE4*-HFC vehicle-treated controls (green). (*B*) a-Wave amplitudes from control and treated animals as in *A* were determined from the a-wave peaks of ERG responses and plotted as a function of flash intensity. Similar to the trend observed for b-wave amplitudes, mice on HFC diet displayed a reduction in a-wave amplitudes (green) compared with the ND group (black), an effect that was not obvious in the antibody-treated groups. Data are expressed as mean \pm SEM. (C) The ratios of a- and b-wave amplitudes as a function of flash intensity are plotted for normal control (black), anti-A β 40/42 antibody-treated (red), and HFC control (green) *APOE4* animals. No significant differences in the ratios were detected between the three groups, indicating that the attenuation in b-wave amplitudes originated in the photoreceptors.

1. Ding JD, et al. (2008) Targeting age-related macular degeneration with Alzheimer's disease based immunotherapies: Anti-amyloid-beta antibody attenuates pathologies in an agerelated macular degeneration mouse model. Vision Res 48:339–345.

Fig. S3. The rod ERG response is attenuated in the *APOE4*-HFC mouse. The rod- and cone-driven components of the b-wave stimulus-response curves shown in Fig. S2A are from *APOE4* mice aged \geq 65 wk that were fed a normal diet (black, ND) or a high-fat, cholesterol-enriched diet (green, HFC) and age-matched *APOE4*-HFC mice injected with 3 mg/kg anti-A β 40/42 (red, HFC-anti-A β 40/42). Data are expressed as mean \pm SEM.

Fig. S4. Plasma levels of $A\beta$ and anti- $A\beta$ antibodies. (*A*) Plasma levels of three anti- $A\beta$ antibodies (nanograms per milliliter) 3 d after the last injection were quite similar to one another (one-way ANOVA; P = 0.23). (*B*) Plasma levels of total (bound/unbound) $A\beta$ in all groups were analyzed by unpaired Student *t* test with Welch's correction. Consistent with the peripheral sink hypothesis, plasma from animals treated with anti- $A\beta40$ (**P = 0.0026) or anti- $A\beta40/42$ (**P < 0.0096) antibodies showed increased plasma levels of $A\beta40$. In contrast, in the anti- $A\beta42$ -treated group, there was no statistically significant elevation in plasma $A\beta42$ levels (n.s., not significant at P = 0.32).

Table S1.	Human donor e	yes used for retinal	pigmented e	pithelium f	flat-mount anal	yses
						-

Death to producement

Donor number Age (y) Sex (h:min) Cause of death C	Ocular diagnosis	Ocular phenotype
03–01 49 M 4:56 Myocardial infarction	Normal	Few small drusen
01–03 77 M 3:30 COPD and respiratory failure	Normal	Few small drusen
03–03 78 F 4:40 Myocardial infarction	AMD	Moderate drusen load
02–05 86 F 8:53 COPD and respiratory failure	AMD	Abundant small drusen
2004–06 77 M 8:20 No data	AMD	Very heavy drusen load
0967–07 75 F 4:39 MI and pneumonia	AMD	Moderate drusen load
2707–09 85 F 3:35 Acute coronary syndrome	Normal	Few small drusen
3024–09 72 F 5:17 Renal failure	Normal	Few small drusen
1276–08 76 M 6:00 CVA	Normal	Few small drusen

M, male; F, female; COPD, chronic obstructive pulmonary disease; AMD, age-related macular degeneration; MI, myocardial infarction; CVA, cerebrovascular accident.

Table S2.	Distribution	of mice	within	groups	used for	' testing	ı different	anti-Aβ	antibodies
-----------	--------------	---------	--------	--------	----------	-----------	-------------	---------	------------

Animals (number and genotype)	Diet	Injection*	Group designation
9, APOE4	ND	Vehicle injection	APOE4-ND
9, APOE4	HFC	Vehicle injection	APOE4-HFC
9, APOE4	HFC	Anti-Aβ42 (7G10-D)	<i>APOE4</i> -HFC + anti-Aβ42
12, <i>APOE4</i>	HFC	Anti-Aβ40 (2H6-D)	<i>APOE4</i> -HFC + anti-Aβ40
12, <i>APOE4</i>	HFC	Anti-Aβ40/42 (RN6G)	<i>APOE4</i> -HFC + anti-Aβ40/42

*One time per week i.p. injections coinciding with the switch to HFC diet for 8-9 wk.

Table S3.	Distribution of mice	within groups used fo	r testing anti-Aβ40/4	2 antibody dose response
-----------	----------------------	-----------------------	-----------------------	--------------------------

Animals (number and genotype)	Diet Injection*		Dose (mg/kg)	Group designation	
11, APOE4	ND	Vehicle injection	0	APOE4-ND	
10, APOE4	HFC	Vehicle injection	0	APOE4-HFC	
11, APOE4	HFC	Anti-Aβ40/42 (RN6G)	3	HFC + 3 mg/kg	
11, APOE4	HFC	Anti-Aβ40/42 (RN6G)	0.3	HFC + 0.3 mg/kg	
10, <i>APOE4</i>	HFC	Anti-Aβ40/42 (RN6G)	0.03	HFC + 0.03 mg/kg	

*One time per week i.p. injections coinciding with the switch to HFC diet for 8-9 wk.