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Information Analysis on Medial Premotor Cortex Neurons During
Vibrotactile Decision-Making with a Postponed Response. Single-cell
information analysis. We are interested in knowing the information
carried by neuronal responses, especially how the firing rate is
related to the stimulus or to the category of the behavioral re-
sponse. To estimate the information content carried by the neu-
ron’s firing rate, we performed mutual information (MI) analysis
(1, 2), which quantified the average amount of common in-
formation contained in the variables R and S—in our case, firing
rate and category of behavioral response. In other words, the MI
reflects the uncertainty removed from one by knowing the other.
The MI was calculated as

IðS;RÞ ¼∑
s; r

Pðs; rÞ log2
Pðs; rÞ
PðsÞPðrÞ; [1]

where P(s), P(r) are the marginal distributions of the variables
and P(s, r) is the joint distribution. A zero-valued MI means that
R and S are statistically independent. The MI is always ≥0. In
the data, the calculation of firing rate was based on the mean
number of spikes across trials, obtaining for each bin an n-
dimensional vector of spike counts, where n is the number of
frequency pairs. One frequency pair is the set of [f1:f2] stimuli
presented on one specific trial. This computation was performed
in sliding windows of 200 ms in steps of 100 ms for each pair of
frequencies. The variable category (the behavioral response) is
represented by ones with the sign of the difference between
a specific frequency pair [f1:f2], i.e., +1 for f1 > f2, and −1 for
f1 < f2. We only included “correct” trials in the analysis, i.e., only
the trials on which the monkey solved the task correctly. Because
the MI estimate is subject to statistical errors that can lead to an
overestimate of the information, we corrected the information
estimates using a first-order Monte Carlo method. In this cor-
rection procedure the mean information from many runs in
which the stimuli and the responses are shuffled across trials is
subtracted from the information estimate from the original un-
shuffled data (2, 3). We applied this Monte Carlo method basing
the correction on 50 shuffled runs. This method also leads to a
test of the statistical significance of the corrected MI between
firing rates and category (4).
The same method was used in the simulations to measure the

mutual information between the neuronal firing in different 200-
ms epochs through a trial, and the decision that had been taken
by the network represented by which pool had the high firing rate
in the decision period when the decision cues were applied (t =
3.5–4.0 s).
We next show how we corrected for multiple comparisons in

the single-cell information analysis using a Holm–Bonferroni
multiple-test correction procedure (5). First, we performed a
statistical significance test of the single-neuron MI on 864 neu-
rons from the MPC (medial premotor cortex), 323 from the pre-
SMA (presupplementary motor cortex), and 252 from M1 (the
primary motor cortex) (6) as follows. To calculate a P value (for
the null hypothesis of no information) for each single cell at a
specific time window (in a 200-ms sliding window with 100-ms
step), we applied a surrogate-based statistical test. The null hy-
pothesis implemented by the surrogates corresponds to the ab-
sence of statistical dependencies between the firing rate of the
neuron in a particular window and the behavioral response of
the animal. To do this, we generated 200 surrogates by randomly

reordering the responses and the firing rates on different trials for
each cell. The P value is calculated by comparing the estimated
MI value of each single cell at a specific time window with the
empirical distribution of the MI of the corresponding surrogates.
The Holm–Bonferroni procedure considers the fact that we have
many cells and therefore multiple null hypotheses to test in a
given time window. Let us assume that the significance α level is
0.05. The Holm–Bonferroni procedure consists of ordering the P
values and comparing the smallest P value to α/k. The first null
hypothesis is rejected if the P value is less than α/k. After this, one
tests the remaining k – 1 null hypotheses by starting again with the
same α, i.e., reordering the k – 1 remaining P values and com-
paring the smallest one to α/(k – 1). This iteration is continued
until the null hypothesis with the smallest P value cannot be re-
jected. The result of the Holm–Bonferroni correction is accepting
all null hypotheses that have not been rejected at previous steps.
We are interested in finding the percentage of neurons that

maintain information about the behavioral response during the
postdecision delay relative to those neurons that show significant
information during the decision period of f2 presentation and also
during the final behavioral response period. Therefore, we se-
lected the neurons with an MI > 0.26 bits during these periods:
from f2 to 50 ms later and at the response time (end of the
postdecisional delay period) in at least three time windows. In
that way we obtained 180 neurons (18.2%) from MPC; 30 neu-
rons (9.0%) from pre-SMA; and 34 neurons (11.1%) from M1.
The results after the Holm–Bonferroni correction are shown for
each of the 200-ms time windows in Fig. S1. Table S1 shows that
in the MPC between 21 and two (depending on the time window)
of 180 MPC neurons are able to maintain the (single-cell) in-
formation in the delay period.
Multiple-cell information analysis. When measuring the information
about a set of stimuli S from the responses of many neurons, the
response space becomes very large, as there are responses from
every neuron to every stimulus. It becomes difficult to record a
sufficiently large number of trials to sample this high dimensional
space adequately. Rolls et al. (7) introduced a decoding pro-
cedure in which the stimulus s′ (from the set S) shown on each
trial is predicted from the neuronal responses. It is then possible
in the low dimensional space of the number of stimuli in the set
to compute the mutual information between actual stimuli s
shown on a trial and the predicted stimuli s′ based on the neu-
ronal responses of the population of neurons. The mutual in-
formation between the stimuli and the predicted stimuli is then
calculated as follows. Bayesian probability decoding using cross-
validation was used to generate a table of conjoint probabilities P
(s, s′). s′ represents all possible stimuli, and hence belong to the
same set S as each stimulus s. The mutual information value
based on this probability decoding (Ip) was calculated as

< Ip > ¼∑
s∈S
∑
s′∈S

Pðs; s′Þ log2
Pðs; s′Þ
PðsÞPðs′Þ: [2]

A correction procedure for the sampling bias was used. The
percentage correct was calculated using maximum-likelihood
decoding in which the most likely stimulus that was shown on each
trial is predicted from the neuronal response of all of the neurons
on that trial. Examples and fuller descriptions of the use of these
procedures are available (2, 7–13).
We performed multiple-cell information analyses to measure

how the information about the decision increases with the
number of MPC neurons (6) in the sample. We found, taking 18
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neurons at random from those with low single-cell information
content in a 600-ms window in the delay period (5.2–5.8 s), that
the average information per neuron was 0.06 bits, and that with
18 neurons the information provided was 0.51 bits, and 90%
correct prediction of the decision (Fig. S3). (These 18 neurons
had low information even during f2, on average 0.4 bits/neuron,
and it needed 14 such neurons selected at random to reach 1 bit
of information during f2.) A further analysis showed that just
seven such neurons provided 0.42 bits of information and 90%
correct or better performance throughout the delay period.
If we consider 16 randomly selected neurons from those with

the higher information values shown in Fig. 2, then the multiple-
cell information analysis showed that the average amount of
information for each cell was 0.56 bits in the same 600-ms window
in the delay period, and that with subsets of cells chosen at
random from the 16 cells the information reached 1 bit and 100%
correct with four to six cells. The implication is that with just six of
the MPC cells chosen at random from the set with higher in-
formation values in the delay period shown in Fig. 2, the animal
could do the task perfectly, 100% correctly.

Model of the Postponed Response Task Using Synaptic Facilitation.
Implementation of the model. The decision-making network is il-
lustrated in Fig. 1C, and operates according to the principles
described elsewhere (14), with the addition of synaptic facili-
tation, as specified in the tabular material that follows. The
model is biologically realistic and based on an attractor network
(15). The network has four neuronal populations or pools: one
inhibitory pool (with NI = 200 neurons) and three excitatory
pools or populations (with the total number of excitatory neu-
rons NE = 800), of which one pool is nonselective and the other
two are selective and specific for each decision. The selective
pools are involved in a competition mediated by inhibition
(inhibitory interneurons), in which only one pool wins (a win-
ner-take-all model). The nonspecific group is connected to the
selective pools; likewise, all three excitatory pools are connected
to the inhibitory pool. All of the pools are self-connected (re-
current connections). We used integrate-and-fire neurons with
three types of receptors mediating the synaptic currents: the
excitatory recurrent postsynaptic currents are mediated by
AMPA (fast) and NMDA (slow) receptors, and the inhibitory
postsynaptic currents to both excitatory and inhibitory neurons
are mediated by GABA receptors (see refs. 2, 14, and 16 for
more details). The external excitatory recurrent postsynaptic
currents injected onto the network for λ1, λ2, and λunsp are
driven only by AMPA receptors. The parameters used are
shown in the following section.
In the simulations, first the network runs with a background

external input of 3 Hz to each of the 800 synapses for external
inputs onto every neuron, which remains on throughout the
simulation. Then in a decision period corresponding to f2 for t =
3.5–4.0 s, each selective pool is driven by a different input, λ1
and λ2 respectively. This time symbolizes the first part of the
vibrotactile decision-making task, i.e., from the beginning of f1
to the end of f2 (Fig. 1). The network responds to the external
inputs (λ1 and λ2 applied in the decision period) by starting the
competition between the two selective (decision) pools, the
firing rates of which grow apart during this period as one pool
moves to a high firing rate attractor level. The pool that reaches
the high firing attractor reflects the decision that has been made,
and the other selective pool remains firing at around the
spontaneous firing rate level. As a result of the calcium-medi-
ated SF, the residual calcium levels of the neurons in the win-
ning selective pool have grown in this decision period, and the
probability of spiking has increased (16), as illustrated in Fig. S4
Left. After this 0.5-s decision-making period, the decision cues
are removed and the postponed response delay short-term
memory period lasts from 4 to 7 s. In this delay period, because

the decision cues have been removed, the firing rates of the two
selective pools drop to a spontaneous level of activity (as shown
by the rastergram in Fig. 3 and by the firing rate in the delay
period shown in Fig. 4 Lower Left). Note, however, that the
information in the delay period is still present in the network
at the synaptic level but not in the firing rates, as reflected in
the information analysis shown in Fig. 2 for the subsequent
recall period.
Finally, at t = 7.0–7.5 s, both selective pools receive the same

extra nonspecific external input (λunsp), to reflect the moment
when the subject receives the stimulus to give its response. The
extra nonspecific external rate was 0.255 Hz onto each of the 800
external input synapses of each neuron in a selective pool. (With
a set of Next = 800 external synapses for external inputs, this
results in an additional Poisson background external input of 204
Hz to each neuron in both selective pools.) When the external
nonspecific input (λunsp) is injected into the selective pools the
report period starts and, because of the altered synaptic calcium
levels, the firing rate of one of the selective pools increases to the
attractor activity level (Fig. 3), as does its information about the
response to be made (Fig. 4), whereas the firing of the other
selective pool remains with low activity, although a little higher
than the spontaneous firing rate. The outcome of the competi-
tion in the postponed response period (t = 7.0–7.5 s in the
simulations) is the report of the task.
Analyzing the computational activity of the SFmodel by theMI

method (Fig. 2), we can see how the information becomes sig-
nificant during the discrimination period, because theMI decodes
the network responses to the injected inputs (λ1 and λ2 to pool 1
and pool 2, respectively), one higher than the other. (In our
simulations, λ1 > λ2.) During the postponed response delay pe-
riod, the MI in the firing rates about the decision becomes less
significant as a result of the reset of the external input, with the
variability of the firing rates as well as the low and non-
differential firing rates contributing to the low information at this
time. Finally, the information available becomes high again
during the report time owing to the λunsp injected, which acts to
increase the rates, but selectively in the pool with the synaptic
facilitation, as shown in Figs. 2 and 3. That is, in the SF model
the rates are encoding the response only during two specific pe-
riods: after f2, when they already have all of the sensory infor-
mation, and when the response is demanded. With this criterion
we confirm that the SF network remembers the discrimination
and it is able to reproduce it when it is requested at the time of
the postponed response without having to store the information
about f1, f2 or the decision in short-term memory using high
firing rates in an attractor. The simulation results are shown in
Figs. 2–4.
In the simulations we consider a trial as correct if the activity of

the more stimulated selective pool (with λ1 = 250 Hz and λ2=
150 Hz) is higher than the activity of the other selective pool,
during all of the bins of the 100-ms period centered at the end of
the λunsp period.

A Model summary

Populations Two: excitatory and inhibitory
Topology —

Connectivity Full connected
Neuron model Leaky integrate-and-fire, fixed threshold, fixed

refractory period, MNDA
Channel models —

Synapse
model

Instantaneous jump and exponential decay for AMPA
and GABA and exponential jump and decay for
NMDA receptors
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Performance in the task by the subjects, and by the SF model, as a function
of the postponed response delay period magnitude. We tested the
performance of themodel as a function of the duration of the delay
period, because synaptic facilitation is unlikely to be able to

maintain a memory trace for long time periods, and it is a pre-
diction of the model that performance will decay to zero as the
short-term memory period increases much beyond the time con-
stant of the synaptic facilitation, 2 s. We performed four simu-
lations with different postponed response delays. In Table S3 we
compare the recorded experimental data (6) with the perfor-
mance of the SF model. Our model fits the data well. Analyzing
the MI of the different postponed decision delays, we found that
the maximum MI value at the end of the decision period in the
network is 0.967 ± 0.001 bits, and it does not depend on the delay
period, whereas the maximum MI value at the end of the non-
specific stimulation is not always the same, but depends on the
delay period. The longer the delay period, the lower is the MI
value: 0.95, 0.91, 0.63, and 0.37 bits for 1-, 1.5-, 2-, and 3-s post-
poned response delays, respectively.
Magnitude of the synaptic facilitation u in the four pools as a function of
time for the synaptic facilitation model, and a mean-field analysis. For
the SF model, the time evolution of u, the synaptic utilization, for
the four different pools is shown in Fig. S4 Left.
The results of a mean field analysis (18, 19) for two different

scenarios for the synaptic facilitation model are shown, one with
synaptic facilitation (Fig. S4, Lower Right) and one without
synaptic facilitation (Fig. S4, Upper Right). We plotted the value
for the firing rate difference between pools 1 and 2 for a fixed
value of λunsp, w + and U, for two values of U (one for each
scenario, 0.15 and 0, respectively) to check that the synaptic
facilitation network cannot recover the information after a delay
period without synaptic facilitation. To compare both ranges of
parameters λunsp, w +, we performed the mean field analysis by
multiplying the specific connectivity weight by the two specific
sets of U, one for each scenario. To obtain the set that corre-
sponds to a nonfacilitated network, we ran the network without
any stimulation, and we took the U values after the network was
stable. To obtain the set that corresponds to a facilitated net-
work, we took the U values of the simulation at the time value of
7.5 s, and show the results in Fig. S4. We show that there is
selective firing at the time of recall in this model with these
parameters only when SF is present.

Model of the Activity in the Delay Period Using Graded Firing Rates in
an Attractor Network. The attractor network used was similar to
that described for the SF network, except that no synaptic fa-
cilitation was used, and the synaptic weights in the intrapool
connections for the selective pools 1 and 2 were set to an
exponential-like distribution to produce an exponential-like firing
rate distribution, as described below and in more detail by Webb
et al. (20).
Graded weight patterns. In an attractor network, the synaptic
weights of the recurrent connections are set by an associative (or
Hebbian) synaptic modification rule with the form

δwij ¼ αrirj; [3]

where δwij is the change of synaptic weight from presynaptic
neuron j onto postsynaptic neuron i, α is a learning rate constant,
rj is the presynaptic firing rate, and ri is the postsynaptic firing
rate when a pattern is being trained (2, 21, 22). To achieve this
for the firing rate distributions investigated, we imposed binary
and graded firing rates on the network by selecting the distribu-
tion of the recurrent synaptic weights in each of the two decision
pools. To achieve a binary firing pattern, used for the SF simu-
lations described, all of the synaptic weights between the excit-
atory neurons within a decision pool were set uniformly to the
same value w+.
Graded firing patterns were achieved by setting the synaptic

weights of the recurrent connections within each of the decision
pools to be in the form of a discrete exponential-like firing rate

A Model summary

Plasticity Synaptic facilitation
Input Independent fixed-rate Poisson spike trains to each

selective population
Measurements Spike activity

B Populations

Total number
of neurons

n = 1,000 Neurons in each selective pool
Nselective = NE sparseness

Excitatory neurons NE = 0.8 · N
Inhibitory neurons NI = 0.2 · N

C1 Neuron and synapse model

Type Leaky integrate-and-fire, conductance-based synapses

Subthreshold
dynamics

Cm
dVðtÞ
dt

¼ −gmðVðtÞ−VLÞ− IsynðtÞ
Isyn(t) = IAMPA, ext(t) + IAMPA, rec(t) + INMDA(t) + IGABA(t)

Spiking If V(t) > Vθ ∧ t > t* + τrp
1. set t* = t
2. Emit spike with time stamp t*
3. V(t) = Vreset

Synaptic
currents

IAMPA;extðtÞ ¼ gAMPA;extðVðtÞ−VEÞ ∑
Next

j¼1
sAMPA;ext
j ðtÞ

IAMPA;recðtÞ ¼ gAMPA;recðVðtÞ−VEÞ ∑
NE

j¼1
wjs

AMPA;rec
j ðtÞujðtÞ

INMDAðtÞ ¼ gNMDAðVðtÞ−VEÞ
1þ γexpð− βVðtÞÞ ∑

NE

j¼1
wjs

NMDA
j ðtÞujðtÞ

IGABAðtÞ ¼ gGABAðVðtÞ−VIÞ ∑
NI

j¼1
sGABAj ðtÞ

C2 Neuron and synapse model

Fraction of
open
channels

dsAMPA;ext
j ðtÞ

dt
¼ − sAMPA;ext

j ðtÞ=τAMPA þ∑
k
δðt − tkj − δÞ

dsAMPA;rec
j ðtÞ

dt
¼ − sAMPA;rec

j ðtÞ=τAMPA þ∑
k
δðt − tkj Þ

dsNMDA
j ðtÞ
dt

¼ − sNMDA
j ðtÞ=τNMDA;decay þ α xjðtÞð1− sNMDA

j ðtÞÞ

dxjðtÞ
dt

¼ − xjðtÞ=τNMDA;rise þ∑
k
δðt − tkj − δÞ

dsGABAj ðtÞ
dt

¼ − sGABAj ðtÞ=τGABA þ∑
k
δðt − tkj − δÞ

Synaptic
facilitation

ujðtÞ
dt

¼ U−ujðtÞ
τF

þ Uð1−ujðtÞÞ∑
k
δðt − tkj Þ

D Input

Type Description
Poisson
generators

Fixed-rate Next synapses per neuron, with each synapse
driven by a Poisson process

E Measurements

Spike activity

Tabular description of the network following the prescription of Nordlie
et al. (17).
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(r) distribution generated using methods taken from Rolls et al.
(23):

PðrÞ ¼

8><
>:

4
3
aλe− 2ðrþr0Þ for r> 0

1− ∑
ri∈ r:i> 0

4
3
aλe− 2ðriþr0Þ for r ¼ 0

; [4]

where a is the sparseness of the pattern defined in Eq. 5, and r0 is
the firing rate of the lowest discretized level. The population
sparseness a of a binary representation is the proportion of neu-
rons active to represent any one stimulus or decision in the set.
The sparseness can be generalized to graded representations, as
shown in Eq. 5:

a ¼

�
∑
NE

i
ri

�2

∑
NE

i
r2i

; [5]

where ri is the firing rate measured for neuron i in the population
of NE excitatory neurons in the network (2, 23–26). We note that
this is the sparseness of the representation measured for any one
stimulus over the population of neurons (2, 26).
In the graded firing rate simulations, we use a = 0.1 to cor-

respond to the fraction of excitatory neurons that are in a single
decision pool. We chose 50 equal-spaced discretized levels to

evaluate the distribution (0,
1
3
− r0,

2
3
− r0, . . . , 3 − r0). r0 and λ

are chosen so that first and second moments of the firing rate
distribution are equal to the sparseness, i.e., < r > = < r2 > = a.
A weight matrix W ¼ fw1;1; . . . ;w1;fNE ;w2;1; . . . ;wfNE ;fNEg was
constructed by first sampling a firing rate for each neuron, ri,
using Eq. 4 and then setting wij based on the desired firing rates
of each pair of neurons, as described in more detail by Hopfield
(20). The mean weight was set to a value close to 2.1, the max-
imum weight was ∼5.0, and the minimal weight was 1.0. The final
mean weight used for the simulations was 2.04, as this provided
for satisfactory stability of the network in the spontaneous pe-
riod, because stability is reduced by graded compared with binary
firing rates (20).
Graded firing rate simulation protocol.Our focus was on the activity in
the delay period after the decision had been taken, and on
whether a low level of firing in the delay period could be restored
to a high level, with a high information content, at the end of the
delay period when an external input was applied equally to the
two decision pools, 1 and 2.
In a 0.5-s period of spontaneous firing from 3.0 to 3.5 s, the

external rates λ1 and λ2 were 3.00 Hz applied to each of the 800
external synapses on each neuron. In the decision period from
3.5 to 4.0 s, λ1 was 3.10 Hz and λ2 was 2.98 Hz per external
synapse, values that produced a decision on almost all trials of
pool 1 winning. In the delay period from 4 to 7 s, λ1 and λ2 were
set to the lowest value that enabled firing to be maintained re-
liably (although at a low level) by some neurons, 2.95 Hz per
synapse. During the recall period from 7.0 to 7.5 s, λ1 and λ2
were set to the identical value of 3.05 Hz per synapse.
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Fig. S2. Multiple-cell information for the group of MPC neurons with low single-cell information values. (A) The values for the average information available
in the responses of different numbers of MPC neurons on each trial taken in a 600-ms period toward the end of the delay period about which decision had
been made. (B) The values for the average information available in the responses of different numbers of MPC neurons on each trial taken in a 600-ms period
during f2 about which decision had been made. The decoding method was Bayesian probability estimation.
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Fig. S3. Multiple-cell information for the group of MPC neurons with high single-cell information values. (A) The values for the average information available
in the responses of different numbers of MPC neurons on each trial taken in a 600-ms period toward the end of the delay period about which decision had
been made. (B) The values for the average information available in the responses of different numbers of MPC neurons on each trial taken in a 600-ms period
during f2 about which decision had been made. The decoding method was Bayesian probability estimation.
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Fig. S1. Results of the Holm–Bonferroni correction for multiple tests for the single-cell information measure in the following areas: MPC, M1, and pre-SMA.
The y axis represents the percentage of neurons for each 200-ms time window that have significant information after the correction has been applied during
the postponed response delay period from 4 to 7 s. Time course of the task is shown above (Fig. 1).
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Fig. S4. (Left) The time evolution of the variable u, the synaptic utilization, for the four different pools. (Upper Left) The network without stimulation. (Lower
Left) the network with stimulation. The shaded gray rectangles show the period of stimulation; blue, the inhibitory pool; green, selective pool 1; pink, the
selective pool 2; cyan, the nonselective pool. The plots are an average of >50 trials. The dark lines are the mean, and the colored shadows are 1 SD. (Right)
Results of the mean field analysis (19, 20). Each point represents the firing rate difference between pool 1 and pool 2 for a fixed value of (λunsp, w+) and U. We
used the values of the mean synaptic facilitation (one for each pool) at the time instant of 7,500 ms extracted from the simulation shown in the above plots.

Table S1. The proportions of neurons in different areas that retain single cell information in the
postponed response delay period when tested with a Holm–Bonferroni correction for multiple
comparisons

Area Responsive
Significant MI in f2 and

recall period

Holm–Bonferroni multiple test

k maximum k minimum

MPC 867 180 (18.2%) 21 (11.7%) 2 (1.1%)
pre-SMA 323 30 (9.0%) 5 (53.3%) 1 (3.3%)
M1 252 34 (11.1%) 18 (52.9%) 1 (2.9%)

Column 2 shows the number of neurons responsive in the task. Column 3 shows the number and proportion
of neurons that show significant information in both f2 and in the response period. Columns 4 and 5 show the
maximum and the minimum across each of the 200-ms time windows in the delay period of the number of
neurons k with significant information after the Holm–Bonferroni test has been applied. The number and
proportion of neurons in an area is shown (see Fig. S1 for more details). f2, second stimulus; MPC, medial
premotor cortex; pre-SMA, presupplementary motor area; M1, primary motor cortex.

Table S2. Parameters used in the integrate-and-fire simulations, and the network connection
parameters

Parameters

Integrate and fire
Cm (excitatory) 0.5 nf Cm (inhibitory) 0.2 nf
gm (excitatory) 25 ns gm (inhibitory) 20 ns
VL −70 mV Vthr −50 mV
Vreset −55 mV VE 0 mV
VI −70 mV
gAMPA, ext (excitatory) 2.08 ns gAMPA, rec (excitatory) 0.104 ns
gNMDA (excitatory) 0.327 ns gGABA (excitatory) 1.25 ns
gAMPA, ext (inhibitory) 1.62 ns gAMPA, rec (inhibitory) 0.081 ns
gNMDA (inhibitory) 0.258 ns gGABA (inhibitory) 0.973 ns
τNMDA, decay 100 ms τNMDA, rise 2 ms
τAMPA 2 ms τGABA 10 ms
τrp (excitatory) 2 ms τrp(inhibitory) 1 ms
α 0.5 ms−1 γ [Mg2+]/(3.57 mM) = 0.280
β 0.062 mV−1 Sparseness 0.10
Next 800
U 0.15 τF 2,000 ms

Connection
w+ 2.17 wi 0.97
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Table S3. Performance of the task (6) measured in percent correct
vs. performance of the SF network with different postponed
decision delays: 1, 1.5, 2.5, and 3 s

Postponed response delay, %

1 s 1.5 s 2.5 s 3 s

Task performance 100 98.6 92.6 85.5
Model performance 100 99 92 83
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