CHARACTERIZATION OF A DIPARTITE IRON-UPTAKE SYSTEM FROM UROPATHOGENIC Escherichia coli STRAIN F11

Doreen Koch¹, Anson C. K. Chan², Michael E. P. Murphy², Hauke Lilie³, Gregor Grass⁴* and Dietrich H. Nies¹

¹Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany, European Community.

²Dept. of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.

³Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany.

⁴School of Biological Sciences, E141 Beadle Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.

⁵Bundeswehr Institute of Microbiology, Neuherbergstr. 11, 80937 Munich, Germany.

Supplemental Material

TABLES

Table S1. Primers used in this study.

Primer	Sequence
<i>fetMP</i> _{prom} d	TTACAGCGTCTTGCCAGCGATC
<i>fetMP</i> _{prom} u	AAGAGTTACGGAAGTTACGCACGT
pGEM <i>fetMP</i> u	GTACGGCGGGTTGAATTAAGCG
pGEM <i>fetM</i> u	GTATCCTCTCGTCTAAAACAACGGCT
pGEM Delta <i>fetM Nco</i> I d	AAACCATGGAACCCATAATCGTTGTATAGCCGT
pGEM Delta <i>fetM Nco</i> I u	AAACCATGGTTCCGCTGTTTTATCAAGACGTTG
pUC18 <i>lacZ Kpn</i> I d	TTTGGTACCCAGGAAACAGCTATGACCATGATT
pUC18 <i>lacZ Kpn</i> I u	ACGGGTACCCATGGCCTGCCCGGTTATTAT
<i>fetP</i> T7 new d	GAAATTAATACGACTCACTATAGGGAACCTGCAACCGATTGA
	TATGG
<i>fetP</i> u	GGCGCGTTGGTTAGTCGGTT
<i>fetP</i> helper probe1 (H1)	TTCAATGTGGTAGGTCACTTTA
<i>fetP</i> helper probe2 (H2)	CCATCGCTGGCAACCATCG
<i>fetP</i> capture probe (BIO)	Biotin-AGTTGCCCACGCCCATCATT
<i>fetP</i> detection probe (DIG)	TGATGTTCGCGCCATAGTGC
pASK3 fetM EcoRI d	GGC <u>GAATTC</u> CACGTGCGTAACTTCCGTAACTCTTT
pASK3 fetM PstI u	AAA <u>CTGCAG</u> TGGGTTATTTTTTATCGTCTCCCCGGGA
pASK3 fetP EcoRI d	AGC <u>GAATTC</u> ACCATGAAGAAAACCCTGATTGCC
pASK3 fetP PstI u	TCG <u>CTGCAG</u> GTTCAGACCGACATATTTAAACTCGTAGCTC
pET22b(+) fetP NcoI d	AAA <u>CCATGG</u> GCTTTAAAGAGTACCCGGCAGGC
pET22b(+) fetP XhoI u	AAA <u>CTCGAG</u> GCTGCCGCGCGCGCACCAGGCCGCTGCTGTTCAG
	ACCGACATATTTAAACTC

Table S2. FetP is a dimeric protein ^a			
Addition	s _{app} , (S)	Mr _{app} , (Da)	
none	2.7	35,000	
100 mM NaCl	2.8	35,400	
20 mM NaCl	2.8	34,800	
300 µM FeCl ₃	2.7	34,500	
$300 \mu\text{M}\text{ZnCl}_2$	2.7	34,600	
$300 \mu\text{M}\text{CuCl}_2$	2.8	37,000	

^{*a*}Periplasmic FetP without any tag was incubated for 30 min with 10 mM EDTA and dialyzed against 25 mM Tris/HCl, pH 7.2 in ultrapure water. Analytical ultracentrifugation was performed with 17 μ M FetP in 300 μ l sample in the absence or presence of the indicated metal salts.

SUPPLEMENTARY FIGURES

Figure S1

pH value

Figure S1. Expression of *fetMp-lacZ* **in the natural host** *E. coli* **strain F11.** A *fetMp-lacZ* reporter gene fusion was inserted single copy into the chromosome of the uropathogenic wild type strain F11. The cells were incubated in the presence of 50 μ M DIP (open circles, \circ), Fe(III)Cl₃ (closed circles, \bullet) or Fe(II)SO₄ (closed squares, \blacksquare) and specific β -galactosidase activity was determined. DIP, four experiments, each iron species two experiments, deviation bars shown.

Figure S2. Iron uptake at pH 9 and 5. Uptake of ⁵⁵Fe by cells of strain ECA611 (*glmS-Gm*) (\circ), ECA612 (*glmS-fetMP*) (\bullet), ECA613 (*glmS-fetM*) (\blacksquare) and ECA614 (*glmS-fetP*) (\blacktriangle) using the filtration method at pH 9 (panel A) and pH 5 (panel B). For the uptake experiment to cells were added ⁵⁵Fe(II)Cl₃ at a final 1 µCi, 1 mM ascorbate, 5 µM FeSO₄, and samples were removed at indicated time points. Averages of three independent experiments with standard deviations (error bars) are shown.

Figure S3. Purification of Strep-tagged FetP. MALDI-TOF analysis of the purified FetP protein yielding two size peaks of 18.676 and of 18.739 kDa. Inset: Coomassie-stained SDS PAGE of FetP after Strep-tactin affinity chromatography. The gel was loaded with $4 \mu g$ protein in lane 2 and a marker in lane 1 with sizes indicated on the left.

Figure S4

Figure S4. CD spectrum of FetP. (A) circular dichroism spectrum (θ_{MRW}) of FetP (51 µM) is shown in the absence of metals (thick solid black line), and in the presence of 150 µM ZnCl₂ (dotted black line), 100 µM MnCl₂ (short-distance dashed black line), 100 µM FeSO₄/1 mM ascorbate (long-distanced dashed black line) or 100 µM CuCl₂ (thick grey line). (B) The difference spectrum ($\Delta \theta_{MRW}$, none minus respective metal) in 25 mM Tris/HCl buffer (pH 7.2), 25°C.

Figure S5a

Figure S5a. Isothermal calorimetric assay of FetP titrated with copper in Bis-Tris buffer. A representative titration curve is shown. Top: Baseline-subtracted raw data. Bottom: Peak-integrated and concentration-normalized enthalpy changes vs. Cu(II)/FetP ratios. FetP protomer concentration was used for analysis.

Figure S5b

Figure S5b. Isothermal calorimetric assay of FetP titrated with zinc in ACES-buffer. A representative titration curve is shown. Top: Baseline-subtracted raw data. Bottom: Peak-integrated and concentration-normalized enthalpy changes vs. Zn(II)/FetP ratios. FetP dimer concentration was used for analysis.

Figure S5c.

Figure S5c. Isothermal calorimetric assay of FetP titrated with manganese in Bis-Tris buffer. A representative titration curve is shown. Top: Baseline-subtracted raw data. Bottom: Peak-integrated and concentration-normalized enthalpy changes vs. Mn(II)/FetP ratios. FetP dimer concentration was used for analysis.

Figure S5d

Figure S5d. Isothermal calorimetric assay of FetP titrated with manganese in ACES buffer. A representative titration curve is shown. Top: Baseline-subtracted raw data. Bottom: Peak-integrated and concentration-normalized enthalpy changes vs. Mn(II)/FetP ratios. FetP dimer concentration was used for analysis.

Figure S6. Electron density at the copper binding site demonstrating multiple copper positions. $2F_{o}$ - F_{c} map in blue contoured at 1 σ and copper anomalous map contoured at 5 σ in teal.

Figure S7. Arrangement of of the copper atoms in the copper centers. Panel A shows CuA1 from the side and panel B from the bottom. The O-Cu distance is 2.6 Å and the N-Cu distance is about 1.9 Å. The angle between the N-Cu bonds are close to a right angle. Cu in CuA1 is slightly below the plane defined by the three N atoms. CuA2 is shown in panel C. Panel D shows CuB1 from the side and panel E from the bottom. The O-Cu distance is 3.0 Å and the Cu is located in the plane defined by the N atoms. Again, the N-Cu bonds come close to forming right angles. Panel F shows CuB2. Atoms are shown with different colors: brown (Cu), red (O from Glu), blue (N from His) and yellow (S from Met). The picture was prepared with Geneious 4.8.5 (www.geneious.com).

Figure S8

Figure S8. A putative third metal binding site "CuC" exists adjacent to CuB. A Met-rich third metal binding site ("CuC") may exist when the Cu site is in the CuB conformation. "CuC" is indicated by the red tetrahedron and is formed by Met_{29} , Met_{34} , and Met_{88} from the same protomer and His_{125}^* from the other protomer. Adjacent to CuA, Met_{29} , Met_{88} and His_{125}^* are also close together but M_{34} is far away.

Figure S9. Superposition of the two Cu-FetP protomers.