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Supporting Online Material 
 
Materials and Methods 
 
Microarray Analysis 

We used Agilent 4x44k microarrays to measure transcript abundance in 208 RIAILs 
(recombinant inbred advanced intercross lines). Strains were grown at 20° following 
standard procedures (S1). Synchronization of the young adult hermaphrodites, isolation 
of RNA, labeling, and hybridization were performed as in Capra et al (S2). Dyes were 
assigned randomly to each sample and paired with an alternately labeled common 
reference (mixed stage, mixed N2:CB4856). We excluded from analyses probes that 
yielded fluorescence intensities near background or at saturation in more than 1/3 of the 
arrays, and we excluded probes that map to multiple dispersed genomic locations, 
determined by mapping probes with BLAT to the WS200 C. elegans reference genome 
sequence. Probes that map to multiple locations within a 20 kb window were retained. 
The resulting dataset included fluorescence intensities from 15,888 probes, with saturated 
or near-background measurements treated as missing data.  
 
Linkage Mapping 

We performed structured nonparametric interval mapping for each probe, using the 
marker data and methods described in Rockman and Kruglyak (S3). We analyzed 10 
permuted datasets, each generated by permuting whole phenotype vectors to retain 
correlations among traits, and we used the distribution of lod scores from the permuted 
datasets to calculate an empirical False Discovery Rate as in references S4 and S5. 
Analyses reported in the text used a gene-specific linear correction for dye effects. As 
checks on the robustness of our analysis, we analyzed each dye-class separately and 
summed the lod scores; results were qualitatively identical. We also tested the impact of 
treating low intensity measurements as missing data. When intensities indistinguishable 
from background were treated as low measured intensities (all set to identical low values 
below the lowest well-measured value), results were largely unchanged, with some 
exceptions for genes whose intensities cross into background range as a function of 
genotype. The result is that slightly more linkages are detected at a given threshold when 
near-background intensities are treated as low-intensity observations.  

From the global analysis, detected linkages were partitioned into local and distant 
classes by two methods. Defining local linkages those with peak lod scores within a 1 Mb 
probe-centered window, 1,410 of the 2,309 linkages are local. Physical positions of QTLs 
were estimated by linear interpolation of physical on genetic position in intervals between 
genotyped SNPs. Defining local linkages as those whose 1-lod QTL support intervals 
encompass the probe position, 1,496 of the 2,309 linkages are local.  
 
Hotspot Analysis 

We identified linkage hotspots in two ways. First, we identified high-confidence 
distant linkages by performing interval mapping on the residuals of the abundance of 
each transcript regressed on genotype probabilities at its genomic locus; that is, we 
removed the effect of potential local linkage prior to interval mapping. This analysis 
identified 482 distant linkages at 5% FDR (lod > 4.85). We counted the number of 
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linkages in 5 cM bins across the genome and declared hotspots in bins containing more 
linkages than the largest number expected genome-wide under Poisson-distributed 
linkage (S4). The expected number of linkages per bin is 1.506, so a bin containing 8 
linkages has p < 0.05 under a Poisson distribution.  We observe 10 significant bins, but 
several of these are adjacent and were merged into five hotspots (following reference S5), 
representing 12 (II), 35 (IV-L), 35 (IV-R), 10 (V), and 127 (X) linkages. Because 
spurious linkage hotspots can arise from expression correlations (S6), we evaluated the 
presence of hotspots in permuted datasets. Two of ten permuted datasets contained a total 
of three hotspots (16, 16, and 58 linkages) at the specified lod threshold, but at higher 
significance thresholds for linkage (e.g., lod > 6, FDR < 0.1%), the permuted datasets 
include no hotspots while the four detected on chromosomes IV, V, and X remain 
significant. At such high lod scores, the number of linkages required for a bin to be a 
hotspot decreases, and several additional hotspots on chromosomes I, II, and V appear to 
be robust though they influence few genes (figure S1). The 12-linkage hotspot identified 
on chr II, however, appears to be very sensitive to the significance cutoff.  

Next, we identified hotspots in our global analysis of expression data as above, using 
the set of 810 nuclear linkages classified as distant linkages on the basis of 1-lod 
confidence intervals. Hotspots of 10 linkages are unexpected under Poisson-distributed 
linkages, and we identify the four largest hotspots identified above, as well as four others 
(one near the hotspot on II, one on I, and two on V, neither coincident with the hotspot 
identified on that chromosome using the local residuals). However, at the 10-linkage 
threshold, the 10 permuted datasets exhibited 14 total hotspots. At a higher lod score 
threshold (lod > 6, FDR < 0.1%), the permuted datasets lack hotspots but the major 
hotspots on II and X remain, as does one on V. Additional minor hotspots also appear on 
V.  

Results are all extremely similar if we use physical rather than genetic distance to 
define bins and if we vary the bin size.  

Based on the analysis of permuted datasets and dependencies on the method for 
defining distant linkage, we consider three of the hotspots detected at the threshold 
required for a 5% FDR for single linkages to be robust: IV-L, IV-R, and X.  

The X hotspot spans a much larger interval than the other hotspots, roughly 12 cM or 
1.2 Mb from 4.2 to 5.4 Mb. Though npr-1 is located within this interval at 4.77 Mb, 
many of the linkages to the hotspot have support intervals that do not overlap npr-1, and 
the region is likely to represent multiple causal variants. 

Local linkages provide strong candidates for the hotspots on chromosome IV: 
Y17G9B.8, a histone acetyltransferase SAGA associated factor is a strong local linker at 
the peak of the IV-L hotspot, and Y105C5A.15, a zinc-finger transcription factor, links 
locally to the IV-R hotspot and is the only protein coding gene in the region, which 
otherwise is occupied by 21U small RNA genes. None of the hotspot-influenced gene 
sets exhibits detectable enrichment for any functional class of genes (S7).  

We also investigated the four small hotspots that include few linkages with very 
strong lod scores.  

The I-L hotspot falls in a physically large region with little recombination in our 
cross; the smallest confidence interval for these linkages spans 400kb from 4.24 to 4.64 
Mb. The gene ppw-1, a candidate by virtue of its known functional polymorphism (S8), is 
nearby but is outside the CIs of the strongly linking genes. The linking transcripts have 
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little functional annotation. There are 4 strong local linkages to the same interval, 
including met-1, a histone methyltransferase and hence a strong functional candidate for 
trans-regulatory effects.  

The II-L hotspot involves distant linkage between the hotspot and multiple 
transcripts that are very closely linked to one another. The CB4856 allele is associated 
with higher abundances of AC8.3, AC8.4, AC8.7, adjacent genes on the far left of X. One 
model to explain such clustered distant linkage is trans-regulation of chromatin (S9). An 
alternative model is that these clusters occur as segregating segmental duplications, with 
a duplicate copy of each cluster present in the genomic location of the hotspot. A third 
possibility is that the genes are similar to one another and exhibit cross hybridization: 
among the AC8 probes, there are multiple perfect matches to sequence nearby, and in fact 
30 of the 35 most distal probes on the far left tip of X were excluded from analysis 
because they have matches elsewhere in the genome (AC8.3,4,7 are genes 32, 31, and 33 
from the left tip). 

The V_La hotspot includes genes scattered across the genome. There are at least 
three very strongly linking (lod >10) oxidoreductases. Other genes include ins-37 and 
several nematode-specific genes, class nspa.  

The V-Lb hotspot influences F55G11.3, F5511.6, F5511.7, and dod-22, adjacent 
genes on chr IV. As in the case of the II-L hotspot, this pattern could be due to trans-
regulation of chromatin or segmental duplication. We investigated whether a genomic 
polymorphism present within F55G11.3 exhibited segregation patterns consistent with 
segmental duplication; the fluorescence intensities for SNP CE4-230 (IV:12,971,747) 
suggested that it is present in the strains as a single bi-allelic locus. Further, two genes 
that are located between the strongly linking genes on IV (F55G11.2 and F55G11.8) 
exhibit no linkage to II:70, suggesting that a single segmental duplication cannot account 
for the observed linkages.  
 
Local Linkage Analysis 

We tested for local linkage by calculating the lod score at the marker or 
pseudomarker nearest each probe, with genetic positions of probes estimated by linear 
interpolation. Pseudomarkers, ungenotyped genetic positions at which we have estimated 
genotype probabilities using the calc.genoprob function in R/qtl (S10), were spaced 
evenly at 1 cM intervals, so each probe was ≤ 0.5 cM from its nearest marker. An 
empirical FDR was calculated by repeating the analysis on each probe in each of the 
permuted datasets. Local linkages may be due to cis-regulatory variation or to trans-
acting variation linked closely to the transcript whose abundance varies. The latter 
category includes protein-coding polymorphism that influences transcript abundance 
through a feedback mechanism (S11). For our purposes, the important feature of a local 
linkage is merely that its position in the genome is well defined.   

Local linkage results are susceptible to hybridization artifacts if the CB4856 sequence 
differs from the N2 reference sequence represented on the microarrays. Indeed, we find 
that an excess of local linkages are associated with higher apparent expression from the 
reference strain, N2 (58.3%, two-tailed binomial p < 10-15). As described in the main text 
and below, our analyses are robust to the exclusion of all genes that exhibit higher 
apparent expression for the N2 allele than for the CB4856 allele.  
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Genomic Heritability 
To derive estimates of domain-specific genetic effects without having to detect and 

localize QTLs, we employed an approach that employs the variance in realized genotypic 
identity-by-descent among relatives. While relatives of equivalent rank have identical 
expected IBD proportions, the realized proportions vary due to random segregation. The 
degree of realized genotypic similarity can explain variation in the degree of phenotypic 
similarity in proportion to the genomic contribution to the relationship between genotype 
and phenotype; this mode of estimating heritability removes many constrictive 
assumptions required by other methods and has high accuracy (S12, S13). The approach 
can be applied to whole genomes and also to partitions of genomes (S14- S16). Our 
analysis included only the 8,973 probes with no missing data. 

To accommodate the population structure of our RIAIL panel, we used a mixed 
model approach to estimate the variance components using EMMA (S17). We estimated 
the realized kinship matrix (K) from the RIAIL genotypes by first assigning genotypes to 
pseudomarkers every 1 kb across the 100,270 kb genome. We assigned each 
pseudomarker genotype using the calc.genoprob function in r/qtl and the physical 
position of each pseudomarker inferred using linear interpolation between the 1,454 
genotyped nuclear SNPs. The genotype of the most distal marker on each chromosome 
end was assigned to all more distal positions. We then used the K matrix to estimate VG 
and VE (genetic and residual variances) for each trait by REML, and we calculated 
heritability as H2 = VG/(VG + VE). 

To test the significance of the estimated heritabilities, we repeated the analysis on 399 
datasets with permuted strain labels. We estimated p-values from the position of the 
observed heritability among the heritabilities from permuted data for each trait and then 
used the distribution of p-values to estimate the False Discovery Rate using qvalue (18) 
with default settings. Using the entire genome to estimate realized relatedness, 1,191 of 
the probes exhibit significant heritability at FDR = 5% (Fig. S2). Much of the heritability 
is driven by strong local linkages, but analysis of the residuals of linear regressions of 
each trait on its genotype, designed to eliminate the effects of local linkage, yielded 232 
probes with significant distant heritabilities at 5% FDR.  

We defined arm and center partitions following the domain boundaries in Rockman 
and Kruglyak (S3), estimated K for each partition, and repeated the REML procedure for 
the real and permuted datasets. The variances among K matrix entries for the genome, the 
arms, and the centers are plotted in Figure S6. To accommodate any potential distortions 
of VG,Arms – VG,Centers due to differences in power implied by Figure S6, we used the trait-
specific empirical p-values for VG,Arms – VG,Centers as our test statistic instead of the simple 
sign of the difference in VG estimates. The p-values were strongly skewed toward both 
high and low values, indicating that the genetic basis of each trait is typically enriched in 
either arms or centers, consistent with contributions from large-effect or spatially 
clustered loci. We then tested whether the excess of traits with p < 0.5 (i.e., with genetic 
contributors to VG enriched in arms) was more than expected. A straightforward 
application of a binomial probability is not appropriate because of correlations among 
traits. We therefore calculated the bias across traits in p-values for each of the permuted 
datasets, i.e., taking each dataset in turn from the 400 (399 permuted plus one 
experimental), treating it as the experimental dataset, and calculating the proportion of p-
values greater and less than 0.5. These proportions formed the basis for calculating the 
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empirical two-tailed p-values for the degree of imbalance between arms and centers in 
contributing to trait heritability. These tests included only traits with genomic heritability, 
1,191 traits in the full analysis and 232 traits in the distant analysis.   

We verified that the results were not driven by the effects of the three robust QTL 
hotspots. We incorporated genotypes at these positions into the heritability analysis as 
fixed-effect covariates and re-estimated genomic heritability and VG,Arms – VG,Centers. The 
results are qualitatively identical. The genomic heritabilities with and without the hotspot 
covariates have a correlation coefficient of 0.968. The correlation coefficient for VG,Arms – 
VG,Centers is 0.936. For the analysis that controls for local linkage, the genomic 
heritabilities with and without hotspots have a correlation of 0.916 and for VG,Arms – 
VG,Centers, 0.990. To assess whether the hotspots had a substantial effect on the overall 
pattern of arm bias, we calculated an arm bias index for each trait, with and without 
hotspot covariates and with and without controlling for local linkage. The index is 
(VG,Arms – VG,Centers)/( VG,Arms + VG,Centers), which standardizes the bias according to the 
total explained genetic variance for each trait and yields a value between -1 and 1, with 
positive values indicating an excess of genetic variation derived from chromosomal arms. 
The distributions of arm bias index are almost identical across the four analyses (Figure 
S7).  
 
Annotation Analysis 

For most analyses, we counted each of the 15,888 probes as separate traits. 14,792 
distinct WormBase WBGene identifiers are associated with 15,809 of the probes. The 
remaining probes map to regions annotated as intergenic, to genes annotated as ‘retired’ 
or ‘transposon,’ or to multiple closely linked recent duplicate genes. Of the 14,792 
distinct genes, 13,922 are interrogated by a single probe, 758 by two probes, 90 by three 
probes, 10 by four probes, 3 by five probes and 1 by six. Most of the genes touched by 
multiple probes have diverse isoforms and may have independent genetic variation (S19). 
For example, of four kin-1 probes, two exhibit no local linkage and two exhibit very 
strong local linkage.  

For analyses in which genes were the unit of analysis, we used only the 14,415 
nuclear genes assigned WBGene identifiers by WormBase for which results of RNAi 
experiments have been reported. For gene-level analyses we reduced multiple probe sets 
to a single observation; if any probes exhibited significant linkage, we scored that gene as 
having linkage. We calculated transcript lengths from the WormBase WS190 annotations 
and calculated gene interval sizes by adding the distance to the nearest exons in both 5’ 
and 3’ directions. Data on RNAi phenotypes comes from a WormMart query of 
WormBase WS190, collecting counts of phenotypes assayed and phenotypes observed 
for each gene. Point estimates of recombination rate are derived from reference S3. 
Sequence conservation is derived from the phastCons segmentation of the C. elegans 
genome into conserved and non-conserved sites (S20), downloaded from the UCSC 
Genome Bioinformatics Site (genome.ucsc.edu, database ce6, table 
phastConsElements6way).  

As reported in the manuscript, each of these genic variables is associated in a 
univariate analysis with the presence or absence of local QTLs. We elaborate here on 
these results.  
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Genes with local QTLs are longer than those without local QTLs. Gene size includes 
the entire primary transcript, including introns, as well as the 5’ and 3’ flanking 
intergenic intervals. The median lengths of genes with and without local QTLs are 5,078 
bp and 4,908 bp (t-test on log-transformed interval lengths p = 0.004). When we consider 
only the traits with higher transcript abundance associated with the CB4856 genotype, to 
control for potential hybridization artifacts, the median lengths are 4,907 and 5,272 bp (p 
= 0.008). Genes with and without local QTLs did not differ significantly in the lengths of 
the primary transcripts or in the lengths of the flanking intergenic intervals, only in the 
sum of these two lengths.   

Genes that exhibit phenotypes when knocked down by RNAi are less likely to have 
local QTLs than genes with no RNAi phenotype (587/4497 genes with phenotypes, 
1787/9918 genes without, 

€ 

χ 2 = 55.1, p < 2 x10-13). When only CB4856-high traits are 
considered, the effect remains (270/2216 vs 748/4869, 

€ 

χ 2 = 17.6, p = 4.7 x10-4).  
Genes with local QTLs contain fewer evolutionarily constrained nucleotides than 

genes without  (t-test on Box-Cox transformed values, p < 4x10-23; median conserved 
basepairs 1,176 vs. 1,504). The result holds for CB4856-high traits (p < 8x10-7; median 
conserved basepairs 1,290 vs. 1,573). These analyses used counts of conserved bases 
from the phastCons segmentation, Box-Cox transformed after adding one to each count, 
λ = 1/3. 

Genes with and without local QTLs do not differ in the total amount of non-local 
phenotypic variance, defined as the total phenotypic variance minus the variance 
explained by the nearest marker or pseudomarker (t-test on log-transformed residual 
variances, p = 0.93). For CB4856-high traits only, there is a slight difference; traits with 
local QTLs have slightly lower residual phenotypic variance (median residual variances 
are 0.20 for traits without local QTLs and 0.18 for traits with local QTLs, p = 0.02).   

Transcript abundance traits with local QTLs are more likely than traits without to also 
map to additional QTLs. These additional QTLs are distant QTLs detected from interval 
mapping on the residuals of trait values regressed on local genotypes. Of 2,374 traits with 
local QTLs, 132 (5.6%) also link elsewhere in the genome, versus 300 of 12041 traits 
(2.5%) that lack local QTLs (

€ 

χ 2 = 63.2, p < 2 x10-15). For CB4856-high traits, the result 
is the same (76/1018 traits with local QTLs and 170/6067 traits without, 

€ 

χ 2 = 55.2, p < 2 
x10-13) 
 
Background selection model 

We fit a background selection model using the standard assumption that 
chromosomes carry a Poisson-distributed number of mutations and the observed genetic 
variation (πBGS) is that expected in the absence of background selection (π0) scaled by the 
expected frequency of mutation-free chromosomes, the zero-mutation class from the 
Poisson distribution, i.e., 

€ 

π BGS = π 0e
−G , where G is the mean of the distribution of 

mutations per chromosome (S21). In a non-recombining chromosome at equilibrium, G = 

€ 

U
2hs , where U is the chromosomal mutation rate, s is the selection coefficient against 

mutations in the homozygous state, and h is the dominance coefficient. With 
recombination, the effect of background selection on a focal gene is a function is the 
integral over all linked sites of a weighted form of G, with weights determined by the 
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density of sites subject to deleterious mutation and the rate of recombination between 
each site and the focal gene (S22). Equation 15 from Hudson and Kaplan (S22) permits 
an approximation to the integral using a summation over discrete intervals.  

We used equation 15 from Hudson and Kaplan (S22), with modifications to include 
the interval-specific density of conserved sites and a scaling factor to accommodate the 
reduction in effective recombination associated with partial selfing (S23). We estimated 
G for each gene k by summing over all linked pseudomarker intervals. 

€ 

ˆ G k =
uisd

2(sd + P | Mk − Mi |)(sd + P | Mk − Mi+1 |)i
∑  

In this formula, ui is the fraction of U attributable to mutations in interval i, which we 
estimate from the number of evolutionarily conserved sites in the interval. We set U = 0.3 
from the spontaneous mutation rate (~10-8 per site, reference S24) and the number of 
conserved bases in the genome (~29,640 kb), estimated by segmentation of the genome 
into conserved and non-conserved bases by the phylogenetic hidden Markov model 
phastCons (S20) . The conservation annotation was downloaded from the UCSC Genome 
Bioinformatics Site as described above. Background selection deals with mutations that 
are deterministically eliminated from the population, and hence the phastCons 
segmentation marks the susceptible sites within each interval.  

Mk is the genetic position of the focal gene, estimated by linear interpolation from the 
genetic map. Mi is the genetic position of the left edge of interval i. We used the genetic 
map from reference S3 after rescaling its expanded genetic map distances to yield 50 cM 
meiotic chromosomes.  

sd is a compound parameter representing the strength of selection against deleterious 
mutations incorporating dominance. We fixed sd at a single value for each analysis, 
although real mutations exhibit an unknown distribution of deleterious effects. If the true 
distribution of selection coefficients is log-normally distributed, fixed sd equal to the 
harmonic mean provides a reasonable approximation, with very little sensitivity to the 
exact shape of the distribution, for analysis of background selection (S27). In simulations, 
Loewe and Charlesworth (S27) found that the harmonic mean approximation 
recapitulated the spatial patterns found with a distribution of coefficients but slightly 
overstated the reduction in diversity due to background selection. Thus, given a 
distribution of deleterious selection coefficients, the best-fitting sd identified in our 
analysis will therefore be slightly displaced (toward lower values) from the harmonic 
mean of the lognormal distribution that would best explain the data. For radically 
different forms of the distribution (e.g., multimodal), the effects of variance in sd are 
unclear.  

Formally, sd in a partially selfing species is dependent on the outcrossing rate, rout, if 
deleterious mutations are not dominant. Equation A2b from reference S23 provides an 
approximation of the effective selection coefficient, given by 

€ 

˜ s d = s( ˆ F + h(1− ˆ F )) , where 
the equilibrium inbreeding coefficient 

€ 

ˆ F  = (1-rout)/(1+rout), s is the strength of selection 
against the homozygous mutant, and h is the dominance coefficient, ranging from 0 for 
recessivity to 1 for dominance. Across the range of values we consider for sd and rout, and 
for all values of h, this correction for inbreeding is negligible, with 

€ 

˜ s d  less than sd by 18% 
in the most severe case, which is when the outcrossing rate is at its minimum and 
mutations are completely recessive.  
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The parameter P, the index of panmixis, rescales the genetic distances to account for 
the low rate of outcrossing in C. elegans, and is equal to 1 -

€ 

ˆ F  (S23, eq. A2). The value of 
this parameter depends on the frequency of outcrossing events, as defined above, but also 
on population structure and selection against outcross progeny (S25). For the case 
governed only by outcrossing rates, our range of P encompasses outcrossing rates 
ranging from 2.5 x 10-5 to 7.7 x 10-2. Population genetic estimates of the effective 
outcrossing rate are on the order of 10-4 to 10-3 (S26).  

There are many uncertainties associated with P and sd. Consequently, we place little 
confidence in the best-fit parameter values; our analysis is aimed at demonstrating the 
robustness of background selection as an explanation across a large range of plausible 
values.  

We performed a search of P x sd space from 5x10-5 to 0.125 for each parameter at 25 
intervals equally distributed in natural log space, using the likelihood ratio test (LRT) 
statistic to evaluate model fit. The LRT derives from a drop-one analysis of terms in a 
logistic regression model with local linkage as a binary dependent variable (Model 7, 
Table 2). The independent variables were gene interval length (log transformed), number 
of conserved bases in the interval (counts of conserved bases from the phastCons 
segmentation, Box-Cox transformed after adding one to each count, λ = 1/3), linkage to a 
distant locus (a binary factor), RNAi phenotype (a binary factor), and background 
selection effect (

€ 

π BGS /π 0 = e−Gk ). Distant linkage was defined as linkage at FDR ≤ 5% in 
the analysis of residuals from linear regressions on local genotypes. The LRT statistic is 
the difference between the residual deviance under the full model and the residual 
deviance under the model with the single background selection term dropped. Its 
significance was tested against a chi-squared distribution with one degree of freedom.  
 
Robustness of background selection as an explanation for local linkage 

We tested the robustness of our findings in several ways, detailed below. Results 
were extremely similar in all cases, with background selection explaining the domain 
effect on local linkage distribution. None of the alternative approaches to modeling or 
analyzing the data affected any claims about background selection. Plots of significance 
of background selection across P x sd parameter space in each analysis are presented in 
Figure S5.  

We repeated the analysis after excluding chromosomes I and X, which have 
distinctive map properties. Chromosome I suffered severe segregation distortion in our 
cross due to selection favoring the N2 allele of the paternal-effect locus peel-1 (S28), and 
the effective recombination rate on the X chromosome has a different dependency on 
outcrossing rate than the autosomes. This dataset includes 10,065 genes. 

We next repeated the analysis after excluding all genes that show higher expression in 
strains carrying the N2 allele of the locus, to control for potential hybridization (SNP-
under-probe) effects. The resulting dataset includes 7,085 genes. 

We then repeated the analysis excluding all N2-high genes and excluding 
chromosomes I and X. The resulting dataset includes 5,260 genes. 

We also repeated the analyses for each of the above datasets using genomic U = 1 
instead of U = 0.3.  
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We performed the analyses using untransformed values for interval length and 
number of conserved nucleotides; this approach gave uniformly poorer fit for these 
variables, increasing the deviance explained by background selection.  

We repeated the analyses with alternative lod-score thresholds, corresponding to FDR 
= 0.001 and FDR = 0.2. In the former case, there are 1,616 genes with local linkage, and 
in the latter case, 3,427. 

We also analyzed the data by multiple linear regression of log(lod scores), which are 
distributed normally according to a Kolmogorov-Smirnov test (p = 0.72). We favor the 
logistic regression approach because the majority of lod scores are low and reflect mostly 
noise. Nevertheless, the results of the linear regression were completely concordant with 
our logistic regression results.   

The only result that was not robust is that the effect of RNAi phenotype on local 
linkage probability is non-significant in analyses that consider only the CB4856-high 
genes. This result may be a simple matter of lower power in these smaller datasets, as the 
RNAi effect is modest in all analyses. 

All analyses were performed using R (S29).  
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Figure S1. Hotspots of distant QTLs. 
The number of distant linkages in each 5 cM bin is plotted across a range of significance 
thresholds from lod > 4.85 (FDR = 5%) to lod > 10 (FDR = 0). The distant linkages are 
based on interval mapping of the residuals of phenotypes on local genotypes. The genetic 
distances are based on the RIAIL cross and are expanded relative to meiotic genetic 
distances. Three locations exhibit an excess of linkages robust to lod-score thresholds.
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Figure S2. Significance of genomic heritability estimates. 
Distributions of permutation-based empirical p-values for heritability (VG/(VG + VE)) of 
transcript abundances estimated from genome-wide genotypic similarity. The top panel 
shows the distribution based on total phenotypic variation. The bottom panel shows the 
distribution based on distant variation only, the residuals of a regression of total phenotypic 
variation on genotype probability at the transcript locus. 
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Figure S3. Arms contribute more than centers to the heritability of most traits. 
A. For each heritable trait, we calculated the probability that the difference between the genetic 
variance contributed by arms and the genetic variance contributed by centers would be as large as 
that observed. Low p-values imply a larger than expected contribution by arms and high p-values 
imply a larger than expected contribution by centers. The departure from uniform p-values is heavily 
biased toward low p-values, representing traits whose heritable variation is largely attributable to 
variation in chromosome arms. 
B. The result holds for total heritable variance and also for distant variance, which excludes 
contributions from variants tightly linked to the trait transcript.
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Figure S4. Background selection explains local linkage probability. 
Caption continues on the following page.
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Figure S4. Background selection explains local linkage probability. 
A. The significance of background selection in a logistic regression model including 
gene-specific mutation and selection variables (Model 7) is plotted as a function of 
panmixis index and strength of selection against deleterious mutations; note the log 
scale. The best-fitting model has a panmixis index of 0.035% (F = 0.99965) and a strength  
of selection of 0.049%, but background selection is significant at p < 0.01 across all but 
a small slice of parameter space (black and grey). The red lines bracket the region of 
parameter space over which the loss of model-fit when background selection is dropped 
from the model exceeds that from dropping any other variable. The blue line surrounds 
the space in which a model featuring only background selection fits the data better than 
one including all gene-specific variables (Model 3), and the turquoise line surrounds the 
space in which background selection alone fits the data better than one including all 
gene-specific variables plus all interactions among them (Model 4). 
B. The effects of background selection on Chromosome IV variation are shown for nine 
parameter combinations (corresponding black dots in A), illustrating the effects of variation 
in outcrossing rate and intensity of selection on expected levels of neutral variation along 
the chromosome. The strong-selection plots on the right are expanded along the y-axis in 
the brown insets. 



Figure S5. Background selection results are robust.  
Caption continues on the following page.
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Figure S5. Background selection results are robust. 
The significance of background selection in several different models is plotted as a 
function of index of panmixis and strength of selection against deleterious mutations. 
In each case, the model includes gene-specific mutation and selection variables and 
the p-value tests the effect of dropping the background selection term from the model. 
Background selection is significant at p < 0.01 across all but a small slice of very 
low-outcrossing parameter space (black) in every case; note that these plots are log-
scaled (axes as in Fig S4), with the bulk of parameter space in the upper right corner 
(see Fig. 2). The red lines bracket the region of parameter space over which background 
selection explains more of the local linkage probability than any other variable in the 
model. We calculated these p-values for two different values of the genomic mutation 
rate, U, and for four different datasets: all genes; only genes on chromosomes II-V, to 
eliminate possible map-distance complications for chromosomes I and X; only genes 
with higher expression in strains carrying the CB4856 allele of the gene’s locus, to 
eliminate potential hybridization artifacts; and only these CB4856-high genes on 
chromosomes II-V. We also calculated p-values under a linear regression of the log of the 
local linkage lod scores; using raw (untransformed) values of two genic variables, gene 
interval length and number of conserved base pairs; and using a more stringent false 
discovery rate (0.001) and a less stringent false discovery rate (0.2). 
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Figure S6. Genomic similarity for all pairs of RIAILs. 
Genomic heritability is based on the relationship between pairwise genotypic and 
phenotypic similarity. These histograms show the distribution of genotypic similarities 
for all pairs of strains, using the entire genome (top), only the chromosome arms (middle), 
and only the chromosome centers (bottom). The means are greater than 0.5 because of the 
inclusion of RIAILs that share recent ancestors and because of segregation distortion on 
chromosome I. See reference S3 for details.. 
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Figure S7. Distant linkage hotspots do not drive arm-biased patterns of genomic heritability. 
The arm bias index, (VG,Arms – VG,Centers)/( VG,Arms + VG,Centers), calculated for each of 8,973 probes 
with no missing data, ranges from -1 to 1, with positive values indicating a greater contribution 
of chromosomal arms than centers to a trait’s heritability. The overall pattern is not altered by 
controlling for the contribution of local QTLs or by controlling for the contribution of the three 
robust QTL hotspots. 




