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Materials and Methods

Reactions were carried out under ambient atmosphere unless otherwise specified. Anhydrous
solvents were obtained either by filtration through drying columns' (ether, CH,Cl,) on an mBraun
system or by distillation over sodium (ether, pentane). Purified compounds were further dried
under high vacuum (0.01-0.05 Torr). Yields refer to purified and spectroscopically pure
compounds. NMR spectra were recorded on a Varian Unity/Inova 500 spectrometer operating at
500 MHz and 125 MHz for 'H and "*C acquisitions, respectively. Chemical shifts are reported in
ppm with the solvent resonance as the internal standard. The following solvent chemical shifts
were used as reference values (ppm): CDCl; = 7.26 (‘H), 77.0("*C); CD,Cl, = 5.32 (‘H), 53.8
(®C). Data is reported as follows: s = singlet, br = broad, d = doublet, t = triplet, q = quartet, m =
multiplet; coupling constants in Hz; integration. UV-VIS spectra were obtained on a Perkin
Elmer Lambda 750 UV-visible spectrophotometer. High-resolution mass spectra were obtained
on Jeol AX-505 or SX-102 spectrometers at the Harvard University Mass Spectrometry Facilities.
Pd(OAc), was purchased from Strem. '*0, was purchased from Cambridge Isotope. Compounds 2,
4,5,8 —11, and 16 were purchased from Aldrich. Compound 12 was purchased from Alfa Aesar.
Compounds 18 — 20 were purchased from TCI. All chemicals were used without purification.

Experimental Data
Effect of temperature on reaction

General procedure: To a solution of Pd,;hpp, (1) (8 mg, 0.01 mmol, 0.1 equiv) and hppH (2) (9 mg,
0.06 mmol, 0.06 equiv) in C¢Dg (I mL) at chosen temperature was added 2-methyl-1-
phenylpropan-1-one (15 mg, 0.10 mmol, 1.0 equiv) and the reaction mixture was stirred
vigorously for 12 h at chosen temperature under 1 atm of oxygen. The conversion of isopropyl
phenyl ketone to the corresponding hydroxylated product was measured by ratio of product/SM
in "H NMR in C¢Ds. Conversion of SM to product is shown as a function of temperature in Table
S1.

Table S1. Evaluation of reaction temperature

0 O
Me 1 atm O,, 10 % Pdyhpps, 60 % hppﬂ OH
Me CgDe, 12h, temp Me® Me
Temperature Conversion (vs SM)

! Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518
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50°C

23°C

6°C

-78 °C

0%

60 %

80 %

0%

Effect of solvent on the reaction

General procedure: To a solution of 1 (8 mg, 0.01 mmol, 0.1 equiv) and 2 (9 mg, 0.06 mmol, 0.6

equiv) in chosen solvent (1 mL) at 6 °C was added 2-methyl-1-phenylpropan-1-one (15 mg, 0.10

mmol, 1.0 equiv) and the reaction mixture was stirred vigorously for 12 h at 6 °C under 1 atm of

oxygen. Solvent was removed in vacuo. The conversion of the reaction was measured by ratio of

product/SM in "H NMR of the crude mixture and is shown as a function of solvent in Table S2.

Table S2. Evaluation of solvent in the reaction

(0]

(e}
Me 1 atm O,, 10 % Pdshppy, 60 % hppH OH
Me solvent, 12h, 6 °C Me  Me

Solvent Conversion (vs SM)
THF 82 %
toluene 82 %
benzene 60 %
ether 72 %
nitromethane 0%
acetone <5%
ethyl acetate 68 %
dioxane 53 %
acetonitrile 52 %

THF has been chosen as solvent, but similar results can be obtained with toluene or benzene.

Table S3 shows the reaction yields of hydroxylated products for a selection of nine substrates.
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Table S3. Hydroxylation in THF, benzene, and toluene

0 1atm Oy, 5% 1, 30% 2 o
atm () 0
R z i OH
R1)K( ’ > R
R, solvent, 12h, 6 °C R2 Rs
Product THF benzene Product THF benzene toluene

OH
o)
96%320 99%b (:ﬁi/r 77%  50%P nd.

Me O

T

Me_o

88% 84%

o o
Me
OH
o o o
Me)%OEt 94%" 85%P Ph)S<Ph
HO
0
Co
Me

o O

0, 0,
colodon T T
PH~ OH  me
N
0 Boc
OH
ijLPh 70% 70%

e
N
Ac
(0]
M

H
o
O
M
OH

99% 99%

70% n.d.

€ 70% n.d.

99%

70%

60%

@ 2.5 mol% of 1 was used.  no 2 was added

Oxidant O, versus air in the reaction

General procedure: Example of Pd,hpps-catalyzed a-hydroxylation of 3 to 4 in air.
To a solution of 1 (38 mg, 0.050 mmol, 0.050 equiv) in THF (10 mL) at 6 °C was added 3.4-
dihydro-1-methylnaphthalen-2(1H)-one (160 mg, 1.00 mmol, 1.00 equiv) and the reaction

mixture was stirred vigorously for 20 h at 6 °C under air. Solvent was removed in vacuo and the

residue was purified by chromatography on silica gel eluting with hexanes / EtOAc (4:1) to afford

90 mg of compound 4 as a yellowish oil (51 % yield).

Scheme S1 shows the results of using air and O, at 1 atm in the Pd,hpp4-catalyzed alpha-

hydroxylation reaction. Yields with air as oxidant are 20-30% lower.
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Scheme S1. Result of using O, versus air in the reaction

Me Me_ OH
o) oxidant, 5 % 1 (0]

THF, 12h, 6 °C
oxidant  air 0O,

yield 51% 77%

O O )
oxidant, 5 % 1 N Me
Me OH
THF, 12h, 6 °C
oxidant  air 0O,
yield 75% 96%
2 idant, 10 % 1, 60% 2 9
oxlaant, o1, (]
Ph)KrMe . - OH
Me THF, 12h, 6 °C Me Me
oxidant  air 0O,

yield 50% 80%
Determination of peroxide content in THF

We determined the content of peroxide content in THF after vigorous stirring of THF under 1 atm
of O, at 6 °C for 12 h by standard iodometric titration using KI and Na,S,0;%

Distilled THF (without BHT): 0.003M of peroxide.
THF with BHT: 0.001M of peroxide.

THF with BHT was used in all examples of Pd,hpp,s-catalyzed hydroxylation reaction. Using
pre-aerated (as described previously) THF (without BHT) in the Pd,hpp,-catalyzed hydroxylation
reaction of 1-methyl-2-tetralone resulted in only trace amounts of product. This result together
with the fact that the reaction could be carried out in benzene/toluene, exclude the possibility of
THF peroxide being responsible for the oxidation of substrates in the title reaction. It also shows
that THF peroxide is not accumulated as a dangerous byproduct during the reaction to significant
levels. For large scale applications, we recommend toluene as a suitable substitute solvent.

Comparison of Pd/C to Pd;hpp4-catalyzed a-hydroxylation

In reference 9e (Monguchi, Y. et al. Synlett 2008, 15, 2291), the author reported a-hydroxylation
of beta-ketoesters using Pd/C and O, with stoichiometric Et;N as base and reducing reagent. The
author proposed that the reaction proceeded through a radical mechanism based on a result shown
in Scheme S2. Homocoupling product instead of hydroxylation product was obtained. However,

2 www.basf.com/diols/pdfs/thf brochure.pdf
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with the same substrate using Pd,hpp, as catalyst under our presented reaction conditions, 90% of

the hydroxylated product was obtained (Scheme S2).

Scheme S2. a-Homo-coupling and a-hydroxylation of 2-phenyl-1,3-indandione

0 (0] (0]
0,, 10% Pd/C (30wt %), 1.1 equiv EtsN O Ph O
2 - (X
EtOH, rt, 12 h, 94% Ph
0 0 0
0 0
02, 5% szhpp4 OH
Ph >
benzene, 12h, 22 °C, 90% Ph
0 o]
S6

Detection of hydroperoxide in Pd;hpps-catalyzed a-hydroxylation

In the isolation of all products presented in the Pd,hpps-catalyzed a-hydroxylation, no

hydroperoxides were detected by mass spectrometry of the products. As shown in the following

scheme, we independently prepared a known a-hydroperoxide and compared the massspec of

Pd;hpp,-catalyzed a-hydroxylation of the same starting compound.’ No hydroperoxide, or its

fragmentation was found in the Pd,hpp,-catalyzed reaction mixture.

Scheme S3. Hydroperoxylation and hydroxylation of phenylbutazone

(0] (0}
Ph‘r\H 0,, 10% Mn(OAc); X Ph\’?‘
_N AcOH, rt, 2h N O-OH
Ph Ph
o (0]
S7
Chemical Formula: C1gHgN2O4
Exact Mass: 340.14231
MS hit: 341.1489 (M + H)*
SM
P MS hit: 309.1584 (M + H)*
Phay 0,, 5% Pdyhppa, 30% hppH f: . ( )
|
o THF, 6°C, 3h 0
o Ph.
Chemical Formula: C4gH5gN205 /[\‘] OH
Exact Mass: 308.15248 Ph %
S8

Chemical Formula: C1gHygN,O3
Exact Mass: 324.14739
MS hit: 325.1535 (M + H)*

3 Rahman, M. T.; Nishino, H. Org. Lett. 2003, 5, 2887.
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Experimental Procedures and Compound Characterization

Pd;hpp4 (1)

(\Nj 1. n-BuLi, THF, -78 °C to 0 °C %/Pd/
= N
N/)\H 2. Pd(OAc), 0°C QN/Pd /W

To a solution of 1,5,7-Triazabicyclo[4.4.0]dec-5-ene (2.78 g, 20.0 mmol, 1.00 equiv) in dry and
degassed THF (200 ml) was added 2.5 M n-BuLi (8.8 mL, 22 mmol, 1.1 equiv) at -78 °C. The
resulting mixture was warmed to 0 °C and was stirred for 3 h at 0 °C. Pd(OAc), (2.25 g, 10.0
mmol, 0.50 equiv) was added to the reaction. The reaction mixture was heated to boiling and
filtered. Solvent was removed in vacuo and the residue was dissolved in benzene (100mL). Red
crystals (2.50 g, 3.26 mmol, 65 %) of 1 were obtained by vapor diffusion of hexanes into the
benzene solution. NMR Spectroscopy: '"H NMR (500 MHz, C¢Ds 25 °C, 8): 3.73 (t, J = 7.5 Hz,
16 H), 2.70 (t, J= 7.5 Hz, 16 H), 1.74 (pentet, J= 7.5 Hz, 16 H).*

tert-Butyl 3-(2-methyl-3-oxobutanoyl)-1H-indole-1-carboxylate (S1)

o O

0O O
1. Boc,O, DMAP, CH,Cl,, 25 °C
| Me - | Me
N 2. NaOMe, Mel, EtOH, 100 °C N Me
H

Boc

To a solution of 1-(1H-indol-3-yl)butane-1,3-dione (2.00 g, 9.93 mmol, 1.00 equiv) and DMAP
(40 mg, 0.33 mmol, 0.33 equiv) in dry CH,Cl, (25 ml) was added di-tert-butyl dicarbonate (2.17
g, 9.93 mmol, 1.00 equiv). The resulting mixture was stirred at 0 °C for 1 h and warmed to 25 °C
for 12 h. Solvent was removed in vacuo and the residue was triturated with ether (2 x 25 ml) to
afford 2.50 g of the NBoc- protected indole product as a yellow solid (84 % yield). The latter was

used in the next step without further purification.

To a solution of the NBoc- protected indole product (500 mg, 1.74 mmol, 1.00 equiv) obtained
from previous step in dry EtOH (8 ml) at 0 °C was added NaOMe (142 mg, 2.62 mmol, 1.50
equiv). The orange colored reaction mixture was stirred for 20 min at 0 °C and Mel (247 mg,
1.74 mmol, 1.00 equiv) was added. The reaction was heated to reflux (100 °C) for 18 h, and then
additional Mel (296 mg, 2.09 mmol, 1.20 equiv) was added. The reaction was heated at 100 °C
for 10 h, cooled to 25 °C, and quenched with 10 mL of sat. NH4Cl(aq). The aqueous layer was

4 Cotton, F. A.; Gu, J.; Murillo, C. A.; Timmons, D. J. J. Am. Chem. Soc. 1998, 120, 13280.



Supporting Information S10

extracted with EtOAc (3 x 10 ml) and the combined organic phases were dried with Na,SO,.
Solvent was removed in vacuo and the residue was purified by chromatography on silica gel
eluting with hexanes / EtOAc (10:1) to afford 300 mg of S1 as a light yellow solid (55 % yield).

R;=0.30 (hexanes : EtOAc = 10 : 1). NMR Spectroscopy: "H NMR (500 MHz, CDCl; 25 °C, §):
8.38 (d,/=7.5Hz, 1 H), 8.33 (s, 1H), 8.13 (d, J=7.5 Hz, 1 H), 7.41-7.35 (m, 2 H), 4.28 (q, J =
7 Hz, 1 H), 2.19 (s, 3 H), 1.72 (s, 9 H), 1.49 (d, J = 7 Hz, 3 H). ®C NMR (125 MHz, CDCl;, 25
°C, 8): 205.14(C), 192.60(C), 148.87(C), 135.57(C), 133.08(CH), 127.37(C), 125.83(CH),
124.62(CH), 122.67(CH), 119.37(C), 115.00(C), 85.74(C), 58.95(CH), 28.06(C), 27.43(CHj3),
13.69(CHs;). Mass Spectrometry: HRMS-FIA (m/z): Calcd for [CsH,NO,4 + H], 316.1543. Found,
316.1547.

5-((3aR,6S,6aS)-Hexahydro-2-oxo-1H-thieno[3,4-d]imidazol-6-yl)pentyl 2,2-diphenylacetate

(S2)
o O. Cl o
J J

s > luene, 250C, 12h s ""/\/\/OY‘\Ph

To diphenylacetic acid (507 mg, 2.39 mmol, 1.10 equiv) in a 25 mL flame-dried round bottom
flask was added SOCI, (10 mL) at 0 °C. The reaction mixture was heated at reflux for 2 h.
SOCIl, was removed by distillation at 60 mbar. The resulting acyl chloride was dissolved in dry
toluene (10 mL) and added via syringe to a vigorously stirring suspension of (3aR,6S,6aS)-
tetrahydro-6-(5-hydroxypentyl)-1H-thieno[3,4-d]imidazol-2(3H)-one (500 mg, 2.17 mmol, 1.00
equiv) in toluene (20 mL) at 23 °C and stirred for 12 h. Solvent was removed in vacuo and the
residue was purified by chromatography on silica gel eluting with CH,Cl, / MeOH (10:1) to
afford 650 mg of compound S2 as a light yellow solid (71 % yield).

R;=0.30 (CH,Cl,: MeOH = 10 : 1). NMR Spectroscopy: 'H NMR (500 MHz, CDCl; 25 °C, 8):
7.25-7.22 (m, 10 H), 5.36 (s, 1H), 5.06 (s, 1 H), 5.02 (s, 1 H), 4.47 (dd, J= 7.5 Hz, 5.0 Hz, 1 H),
4.24 (dd, J=17.5 Hz, 5.0 Hz, 1 H), 4.15 (t,J= 6.5 Hz, 2 H), 3.09 (dd, /= 1.0 Hz, /= 0.5 Hz, 1 H),
2.89 (dd, J=1.5Hz,J= 0.5 Hz, 1 H), 2.70 (d, /= 1.0 Hz, 1 H), 1.67-1.54 (m, 4 H), 1.42-1.25
(m, 4 H). ®C NMR (125 MHz, CDCls, 25 °C, 8): 172.55(C), 163.87(C), 138.66(C), 128.54(CH),
128.48(CH), 127.15(CH), 65.11(CH,), 61.86(CH), 60.04(CH), 57.09(CH), 55.49(CH),
40.46(CH,), 28.39(CH,), 28.35(CH,), 28.15(CH;), 25.63(CH,). Mass Spectrometry: HRMS-FIA
(m/z): Calcd for [C,4HN,O3S + Na], 447.1713. Found, 447.1713.

3,4-dihydro-2-(pent-4-enyl)naphthalen-1(2 H)-one (S10)

NNMe, 1-LDA, THF, 0°C

0}
2. /\/\/Br! OoC _
3. 1M HCl(aq) / MeOH, rt
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To a solution of diisopropylamine (7.9 mL, 11 mmol, 1.1 equiv) in dry THF (25 ml) at -78°C was
added 1.6 M n-Butyl lithium (6.9 mL, 11 mmol, 1.1 equiv). The mixture was warmed to at 0 °C
and stirred at 0 °C for 1 h. 1-(2,3-dihydronaphthalen-4(1H)-ylidene)-2,2-dimethylhydrazine (1.8
g, 10 mmol, 1.0 equiv) was added to the reaction and the mixture was stirred at 0 °C for 1 h. 5-
bromo-1-pentene was added to the reaction and the mixture was stirred at 0 °C for 12 h. The
reaction mixture was quenched with 30 mL of sat. NH,Cl(aq). The aqueous layer was extracted
with EtOAc (3 x 30 ml) and the combined organic phases were dried with Na,SO,. Solvent was
removed in vacuo. The residue was dissolved in 40 mL MeOH. 30 mL of 1 M HCI (aq) was
added and the mixture was stirred at 23 °C for 12 h. MeOH was removed in vacuo. The residue
aqueous mixture was extracted with EtOAc (3 x 30 ml) and the combined organic phases were
dried with Na,SO,. The residue was purified by chromatography on silica gel eluting with
hexanes / EtOAc (12:1) to afford 1850 mg of S1 as a light yellow oil (86 % yield).

R;= 0.50 (hexanes : EtOAc = 12 : 1). '"H NMR (500 MHz, CDCl; 25 °C, §): 8.03 (d, J= 7.5 Hz,
1 H),7.45(t,J=7.5Hz, 1 H), 7.29 (t, J= 7.5 Hz, 1 H), 7.22 (d, /= 7.5 Hz, 1 H), 5.83 (ddt, J =
17 Hz, J=10Hz, J=6.5Hz, 1 H), 5.02 (dd, /=17 Hz,J=1.5Hz, 1 H), 4.95 (d,J= 10 Hz, 1 H),
3.03-2.97 (m, 2 H), 2.50-2.45 (m, 1 H), 2.62-2.21 (m, 1 H), 2.13-2.08 (m, 2 H), 1.99-1.86 (m, 2
H), 1.57-1.46 (m, 3 H). "C NMR (125 MHz, CDCls;, 25 °C, &): 199.23(C), 143.39(C),
138.08(CH), 132.54(CH), 132.06(C), 128.21(CH), 126.85(CH), 126.00(CH), 114.15(CH,),
46.88(CH), 33.47(CH,), 28.58 (CH,), 27.96(CH,), 27.88(CH,), 25.87(CH,). Mass Spectrometry:
HRMS-FIA (m/z): Calcd for [CsH 3O + H], 215.1430. Found, 215.1436.

3,4-Dihydro-1-hydroxy-1-methylnaphthalen-2(1H)-one (4)
Me o 1.2m 07,5 % Pegfiopy Me, OH
THF, 0°C
To a solution of Pdyhpp, (38 mg, 0.050 mmol, 0.050 equiv) in THF (10 mL) at 0 °C was added

3,4-dihydro-1-methylnaphthalen-2(1H)-one (160 mg, 1.00 mmol, 1.00 equiv) and the reaction
mixture was stirred vigorously for 20 h at 0 °C under 1 atm of oxygen. Solvent was removed in

vacuo and the residue was purified by chromatography on silica gel eluting with hexanes / EtOAc
(4:1) to afford 135 mg of compound 4 as a yellowish oil (77 % yield).

R;=0.35 (EtOAc: hexanes = 1 : 4). NMR Spectroscopy: "H NMR (500 MHz, CDCl; 25 °C, §):
7.66 (dd, J=17.5Hz,J=1Hz, 1 H), 7.34-7.31 (m, 1 H), 7.27-7.24 (m, 1 H), 7.17 (d, J = 8.5 Hz,
1 H), 3.93 (s, 1 H), 3,31 (ddd, J=9 Hz, J=9 Hz, J =9 Hz, 1H), 3.09 (ddd, /= 16.5 Hz, /=9 Hz,
J=4Hz, 1H), 2.96 (ddd, J=16.5 Hz, J=9 Hz, J=4 Hz, 1H), 2.65 (ddd, /=9 Hz, J=9 Hz, J =
8 Hz, 1H), 1.56 (s, 3 H). C NMR (125 MHz, CDCls, 25 °C, 8): 212.95(C), 140.75(C), 133.70(C),
127.66(CH), 127.60(CH), 127.49(CH), 125.27(CH), 76.04(C), 33.43(CH), 27.79(CH,),
27.68(CHj3). Mass Spectrometry: HRMS-FIA (m/z): Caled for [Cy;H;,0, + Na], 199.0730. Found,
199.0724.
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2-Acetyl-3,4-dihydro-2-hydroxynaphthalen-1(2H)-one (5)

Q9 1atm0,, 2.5% Pdohpp, 2 oH o
To a solution of Pdyhpps (10 mg, 0.013 mmol, 0.025 equiv) in THF (5 mL) at 6 °C was added 2-
acetyl-3,4-dihydronaphthalen-1(2H)-one (94 mg, 0.50 mmol, 1.0 equiv) and the reaction mixture

was stirred vigorously for 12 h at 6 °C under 1 atm of oxygen. Solvent was removed in vacuo
and the residue was purified by chromatography on silica gel eluting with hexanes / EtOAc (2:1)
to afford 98 mg of compound 5 as a white solid (96 % yield).

R;=0.30 (EtOAc: hexanes = 1 : 2). NMR Spectroscopy: 'H NMR (500 MHz, CDCl; 25 °C, §):
8.02 (d,J=7Hz, 1 H),7.53 (t,J=7Hz, 1 H), 7.33 (t, /=7 Hz, 1 H), 4.64 (s, 1 H), 3.12 (m, 2 H),
2.60 (td, J =5 Hz, J= 14 Hz, 1 H), 2.28 (s, 3 H), 2.22-2.16 (m, 1 H). *C NMR (125 MHz,
CDCl;, 25 °C, 6): 206.85(C), 196.55(C), 144.15(C), 134.46(CH), 130.39(C), 128.92(CH),
127.76(CH), 126.87(CH), 81.73(C), 32.28(CH,), 25.47(CH,), 24.99(CH3). Mass Spectrometry:
HRMS-FIA (m/z): Calcd for [Ci,H;,0;3 + Na], 227.0679. Found, 227.0673.

Ethyl 2-cyclopropyl-2-hydroxy-3-oxobutanoate (6)
o o o o

1 atm Oy, 5% Pdshpps
Me OEt > Me OEt
THF, 6°C HO

To a solution of Pd>;hpp, (19 mg, 0.025 mmol, 0.05 equiv) in THF (4 mL) at 6 °C was added ethyl

2-cyclopropyl-3-oxobutanoate (85 mg, 0.50 mmol, 1.0 equiv) and the reaction mixture was stirred

vigorously for 12 h at 6 °C under 1 atm of oxygen. Solvent was removed in vacuo and the
residue was purified by chromatography on silica gel eluting with hexanes / EtOAc (6:1) to afford
87 mg of compound 6 as a colorless oil (94 % yield).

R;=0.25 (EtOAc: hexanes = 1 : 6) NMR Spectroscopy: 'H NMR (500 MHz, CDCl; 25 °C, §):
428 (qd, /=7 Hz,J=1Hz, 2 H), 3.88 (s, 1 H), 1.65-1.59 (m, 1 H), 1.31 (t,J=7 Hz, 3 H), 0.64—
0.60 (m, 1 H), 0.50-0.39 (m, 2 H), 0.37-0.32 (m, 1 H),. °C NMR (125 MHz, CDCl;, 25 °C, §):
204.72(C), 171.07(C), 81.11(C), 62.41(CH,), 24.51(CH3), 14.45(CH), 13.97(CH,), 0.17(CHy), -
0.35(CH,). Mass Spectrometry: HRMS-FIA (m/z): Calcd for [CoH 404 + Na], 209.0784. Found,
209.0786.

Methyl 1-hydroxy-4-methoxy-2-oxocyclopent-3-enecarboxylate (7)

O O

2 1 atm Oy, 5 % Pd,hpps OH
- 0
M
OMe THF, 6°C
OMe

MeO MeO

To a solution of Pd,hpp, (19 mg, 0.010 mmol, 0.050 equiv) in THF (2 mL) at 6 °C was added
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methyl 4-methoxy-2-oxocyclopent-3-enecarboxylate (35 mg, 0.20 mmol, 1.0 equiv) and the
reaction was stirred vigorously for 12 h at 6 °C under 1 atm of oxygen. Solvent was removed in
vacuo and the residue was purified by chromatography on silica gel eluting with hexanes / EtOAc
(1:1) to afford 36 mg of compound 7 as a white solid (97 % yield).

R;=0.20 (EtOAc: hexanes = 1 : 1) NMR Spectroscopy: 'H NMR (500 MHz, CDCl; 25 °C, §):
5.34 (s, 1H), 3.94 (s, 3 H), 3.80 (s, 3 H), 3.18 (d, J=17.5 Hz, 1 H), 2.75 (d, J=17.5 Hz, 1 H). °C
NMR (125 MHz, CDCls, 25 °C, 8): 199.40(C), 189.94(C), 171.47(C), 101.01(CH), 79.01(C),
59.15(CHs;), 53.40(CHs), 40.52(CH,). Mass Spectrometry: HRMS-FIA (m/z): Calcd for [CgH(Os
+ H], 187.0601. Found, 187.0603.

Ethyl 1-hydroxy-2-methyl-4-oxocyclohex-2-enecarboxylate (8)

O (0]
1 atm O,, 5 % Pd,hppy, 0.3 eq hppH
» EtO.C
EtO,C THF, 6°C HO

Me Me

To a solution of Pd>;hpp, (16 mg, 0.020 mmol, 0.050 equiv) in THF (4 mL) at 6 °C was added
ethyl 2-methyl-4-oxocyclohex-2-enecarboxylate (73 mg, 0.40 mmol, 1.0 equiv) and the reaction
mixture was stirred vigorously for 12 h at 6 °C under 1 atm of oxygen. Solvent was removed in
vacuo and the residue was purified by chromatography on silica gel eluting with hexanes / EtOAc
(1:1) to afford 72 mg of compound 8 as a pale yellow oil (90 % yield).

R;=0.20 (EtOAc: hexanes = 1 : 1). NMR Spectroscopy: 'H NMR (500 MHz, CDCl; 25 °C, §):
4.37-4.32 (m, 2 H), 3.77 (s, 1 H), 2.65-2.61 (m, 2 H), 2.41-2.36 (m, 1 H), 2.25-2.20 (m, 1 H),
1.91 (s, 3 H), 1.33 (t, J = 7.5 Hz, 3 H). "“C NMR (125 MHz, CDCl;, 25 °C, §): 197.90(C),
174.18(C), 157.35(C), 129.17(CH), 73.92(C), 63.02(CH,), 33.81(CH,), 33.61(CH,), 18.57(CH3),
13.97(CHs;). Mass Spectrometry: HRMS-FIA (m/z): Caled for [C,0H 404 — OCH,CH;5], 153.0552.
Found, 153.0545.

2,3-Dihydro-2-hydroxy-2-methylinden-1-one (9)

O 1 atm Oy, 5 % Pdohppy, 0.3 eq hppH 0
Me 0
THF, 6°C Ve

To a solution of Pd,;hpp, (19 mg, 0.025 mmol, 0.050 equiv) and hppH (21 mg, 0.15 mmol, 0.30
equiv) in THF (2 mL) at 6 °C was added 2,3-dihydro-2-methylinden-1-one (73 mg, 0.50 mmol,

1.0 equiv) and the reaction mixture was stirred vigorously for 12 h at 6 °C under 1 atm of oxygen.

Solvent was removed in vacuo and the residue was purified by chromatography on silica gel
eluting with hexanes / EtOAc (3:1) to afford 71 mg of compound 9 as a colorless oil (88 % yield).

Ry=0.25 (EtOAc: hexanes = 1 : 3). NMR Spectroscopy: 'H NMR (500 MHz, CDCl; 25 °C, §):
7.79 (d, J=8 Hz, 1 H), 7.64 (t, /=8 Hz, 1 H), 7.45-7.29 (m, 2 H), 3.25 (ABq, Avag = 19 Hz, Ja
= 17 Hz, 2 H), 2.57 (s, 1 H), 1.45 (s, 3H). *C NMR (125 MHz, CDCl;, 25 °C, &): 208.05(C),
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151.15(C), 135.78(CH), 133.49(C), 127.81(CH), 126.70(CH), 124.86(CH), 77.36(C), 42.19(CH,),
25.56(CHj3). Mass Spectrometry: HRMS-FIA (m/z): Calcd for [C1oH00; + Na], 185.0573. Found,
185.0540.

3,4-Dihydro-2-hydroxy-2-methylnaphthalen-1(2H)-one (10)

o}

M 1 atm Oy, 5 % Pdshppy, 0.3 eq hppH Q OH
e

To a solution of Pd,hpp, (38 mg, 0.050 mmol, 0.050 equiv) and hppH (42 mg, 0.30 mmol, 0.30
equiv) in THF (10 mL) at 0 °C was added 3,4-dihydro-2-methylnaphthalen-1(2H)-one (160 mg,

1.00 mmol, 1.00 equiv) and the reaction mixture was stirred vigorously for 12 h at 0 °C under 1

atm of oxygen. Solvent was removed in vacuo and the residue was purified by chromatography
on silica gel eluting with hexanes / EtOAc (4:1) to afford 160 mg of compound 10 as a white
solid (91 % yield).

R;=0.30 (EtOAc: hexanes = 1 : 4). NMR Spectroscopy: 'H NMR (500 MHz, CDCl; 25 °C, §):
8.03(d,J=7.5Hz, 1 H),7.52(t,J=7.5Hz, 1 H),7.43 (t, /=7.5Hz, 1 H),7.26 (d,J=7.5Hz, 1
H), 3.85 (s, 1 H), 3.14-3.00 (m, 2 H), 2.86-2.16 (m, 2 H), 1.39 (s, 3 H). °C NMR (125 MHz,
CDCl;, 25 °C, d): 201.52(C), 143.24(C), 133.86(CH), 129.79(C), 128.83(CH), 127.82(CH),
126.68(CH), 73.41(C), 35.73(CH,), 26.62(CH,), 23.70(CH;). Mass Spectrometry: HRMS-FIA
(m/z): Calcd for [C,;H1,0, + Na], 199.0730. Found, 199.0727.

Diethyl 2-hydroxy-2-phenylmalonate (11)

o 0 1 atm O,, 5 % Pd,hppy, 0.3 eq hppH o o
PRSI T P N
Ph ! Ph OH

To a solution of Pd,;hpp, (8 mg, 0.01 mmol, 0.05 equiv) and hppH (8.5 mg, 0.060 mmol, 0.30
equiv) in THF (1.5 mL) at 6 °C was added diethyl 2-phenylmalonate (47 mg, 0.20 mmol, 1.0
equiv) and the reaction mixture was stirred vigorously for 12 h at 6 °C under 1 atm of oxygen.
Solvent was removed in vacuo and the residue was purified by chromatography on silica gel
eluting with hexanes / EtOAc (5:1) to afford 49 mg of compound 11 as a white solid (97 % yield).

R;=0.25 (EtOAc: hexanes = 1 : 5). NMR Spectroscopy: 'H NMR (500 MHz, CDCl; 25 °C, §):
7.66-7.64 (m, 2 H), 7.39-7.34 (m, 3 H), 4.36-4.25 (m, 5 H), 1.29 (t, J= 8.5 Hz, 6 H). °C NMR
(125 MHz, CDCl;, 25 °C, 8): 169.85(C), 135.90(C), 128.55(CH), 127.93(CH), 126.60(CH),
79.94(C), 62.94(CH,), 13.89(CHj3;). Mass Spectrometry: HRMS-FIA (m/z): Calcd for [C3H 605 +
Na], 275.0890. Found, 275.0893.
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2-Hydroxy-2-phenylcyclohexanone (12)

(0]

Ph 1 atm Oy, 5 % Pdohppy, 0.3 eq hppH Q OH
ij/ THF, 6°C @Ph

To a solution of Pd,hpp, (38 mg, 0.050 mmol, 0.050 equiv) and hppH (42 mg, 0.30 mmol, 0.30
equiv) in THF (10 mL) at 6 °C was added 2-phenylcyclohexanone (174 mg, 1.00 mmol, 1.00
equiv) and the reaction mixture was stirred vigorously for 12 h at 6 °C under 1 atm of oxygen.

Solvent was removed in vacuo and the residue was purified by chromatography on silica gel
eluting with hexanes / EtOAc (4:1) to afford 133 mg of compound 12 as a white solid (70 %
yield).

R;=0.30 (EtOAc: hexanes = 1 : 4). NMR Spectroscopy: 'H NMR (500 MHz, CDCl; 25 °C, §):
7.41-7.37 (m, 2 H), 7.33-7.30 (m, 3 H), 4.49 (s, 1 H), 3.02-2.98 (m, 1 H), 2.55-2.52 (m, 1 H),
2.46-2.39 (m, 1 H), 2.08-2.03 (m, 1 H), 1.88-1.71 (m, 4 H), . >C NMR (125 MHz, CDCl;, 25 °C,
8): 212.67(C), 139.92(C), 129.11(CH), 128.29(CH), 126.35(CH), 80.02(C), 38.87(CH,),
38.82(CH,), 28.31(CH,), 23.03(CH;). Mass Spectrometry: HRMS-FIA (m/z): Calced for
[C12H140; + K], 229.0625. Found, 225.0635.

2-Hydroxy-1,2-diphenylpropan-1-one (13)

0 1 atm O,, 5 % Pd,hppy, 0.3 eq hppH 0

Ph Ph
Ph)Y &
THF, 6°C Ph

Me Me” “OH

In THF: To a solution of Pdhpp, (8 mg, 0.01 mmol, 0.05 equiv) and hppH (8.5 mg, 0.060 mmol,
0.30 equiv) in THF (2 mL) at 6 °C was added 1,2-diphenylpropan-1-one (42 mg, 0.20 mmol, 1.0
equiv) and the reaction mixture was stirred vigorously for 12 h at 6 °C under 1 atm of oxygen.
Solvent was removed in vacuo and the residue was purified by chromatography on silica gel
eluting with hexanes / EtOAc (8:1) to afford 45 mg of compound 13 as a white solid (99 % yield).

In toluene: To a solution of Pd,;hpps (8 mg, 0.01 mmol, 0.05 equiv) and hppH (8.5 mg, 0.060
mmol, 0.30 equiv) in toluene (2 mL) at 6 °C was added 1,2-diphenylpropan-1-one (42 mg, 0.20
mmol, 1.0 equiv) and the reaction mixture was stirred vigorously for 12 h at 6 °C under 1 atm of
oxygen. Solvent was removed in vacuo and the residue was purified by chromatography on silica
gel eluting with hexanes / EtOAc (8:1) to afford 45 mg of compound 13 as a white solid (99 %
yield).

R;=0.30 (EtOAc: hexanes = 1 : 8). NMR Spectroscopy: 'H NMR (500 MHz, CDCl; 25 °C, §):
7.67-7.64 (m, 2 H), 7.45-7.41 (m, 3 H), 7.38-7.35 (m, 2 H), 7.32-7.25 (m, 3 H), 4.74 (s, 1 H),
1.88 (s, 3 H). "C NMR (125 MHz, CDCls, 25 °C, §): 201.96(C), 142.41(C), 133.40(C),
132.96(CH), 130.17(CH), 128.94(CH), 128.25(CH), 128.17(CH), 125.91(CH), 79.03(C),
26.00(CHj3). Mass Spectrometry: HRMS-FIA (m/z): Calcd for [C;5sH 4,0, + Na], 249.0886. Found,
249.0878.
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1-Acetyl-3-hydroxy-3-methylindolin-2-one (14)

Me Me
1 atm Oy, 5 % Pd,hppy, 0.3 eq hppH OH
o} > o)
N THF, 6°C N

Ac Ac

In THF: To a solution of Pd,;hpp, (8 mg, 0.01 mmol, 0.05 equiv) and hppH (8.5 mg, 0.060 mmol,
0.30 equiv) in THF (2 mL) at 6 °C was added 1-acetyl-3-methylindolin-2-one (38 mg, 0.20 mmol,
1.0 equiv) and the reaction mixture was stirred vigorously for 12 h at 6 °C under 1 atm of oxygen.
Solvent was removed in vacuo and the residue was purified by chromatography on silica gel
eluting with CH,Cl, / MeOH (10:1) to afford 29 mg of compound 14 as a white solid (70 % yield).

In toluene: To a solution of Pd;hpps (8 mg, 0.01 mmol, 0.05 equiv) and hppH (8.5 mg, 0.060
mmol, 0.30 equiv) in toluene (2 mL) at 6 °C was added 1-acetyl-3-methylindolin-2-one (38 mg,
0.20 mmol, 1.0 equiv) and the reaction mixture was stirred vigorously for 12 h at 6 °C under 1
atm of oxygen. Solvent was removed in vacuo and the residue was purified by chromatography
on silica gel eluting with CH,Cl, / MeOH (10:1) to afford 29 mg of compound 14 as a white solid
(70 % yield).

Ry=0.15 (CH,Cl,: MeOH = 10 : 1). NMR Spectroscopy: 'H NMR (500 MHz, CDCl; 25 °C, 8):
821 (d,J=8Hz, 1 H), 743 (d, /=8 Hz, 1 H), 7.36 (t, /=8 Hz, 1 H), 7.24 (t, /= 8 Hz, 1 H),
2.65 (s, 3 H), 1.63 (s, 3 H). °C NMR (125 MHz, CDCl;, 25 °C, 8): 179.01(C), 170.70(C),
139.13(C), 130.28(C), 130.17(CH), 125.81(CH), 123.23(CH), 116.92(CH), 73.56(C), 26.49(CHs),
25.68(CH3). Mass Spectrometry: HRMS-FIA (m/z): Caled for [C;;H;;NO; + Na], 228.0631.
Found, 228.0630.

6-Hydroxy-4,4,6-trimethylcyclohex-2-enone (15)

(0] (0]
1 atm Oy, 5 % Pdohppy, 0.3 eq hppH
- OH
THF, 6°C

To a solution of Pd,hpp, (19 mg, 0.025 mmol, 0.050 equiv) and hppH (21 mg, 0.15 mmol, 0.30
equiv) in THF (5 mL) at 6 °C was added 4,4,6-trimethylcyclohex-2-enone (69 mg, 0.50 mmol, 1.0
equiv) and the reaction mixture was stirred vigorously for 12 h at 6 °C under 1 atm of oxygen.

Solvent was removed in vacuo and the residue was purified by chromatography on silica gel
eluting with hexanes / EtOAc (4:1) to afford 55 mg of compound 15 as a pale yellow oil (71 %
yield).

R;=0.30 (EtOAc: hexanes = 1 : 4). NMR Spectroscopy: 'H NMR (500 MHz, CDCl; 25 °C, 8):
6.62 (d,J=10Hz, 1 H), 591 (d,J=10 Hz, 1 H), 3.36 (s, 1H), 2.03 (ABq, Avag =20 Hz, Jag =
13.5 Hz, 2 H), 1.41 (s, 3 H), 1.26 (s, 3H), 1.19 (s, 3H). C NMR (125 MHz, CDCls, 25 °C, §):
202.31(C), 159.51(CH), 122.94(CH), 72.17(C), 48.01(CH,), 34.17(C), 32.32(CH3;), 28.07(CHs;),
27.45(CHj3). Mass Spectrometry: HRMS-FIA (m/z): Calcd for [CoH14,0, + Na], 117.0886. Found,
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117.0867.

Methyl 2-hydroxy-2,2-diphenylacetate (16)

o 1 atm Oy, 5 % Pdshpps, 30% hppH o
Ph -
Houe i 0. Loy
Ph ’ Ph Ph

To a solution of Pd,;hpps (19 mg, 0.025 mmol, 0.050 equiv) and hppH (21 mg, 0.15 mmol, 0.30
equiv) in THF (2 mL) at 6 °C was added methyl 2,2-diphenylacetate (113 mg, 0.500 mmol, 1.00
equiv) and the reaction mixture was stirred vigorously for 12 h at 6 °C under 1 atm of oxygen.
Solvent was removed in vacuo and the residue was purified by chromatography on silica gel
eluting with hexanes / EtOAc (10:1) to afford 93 mg of compound 16 as a white solid (77 %
yield).

Ry=0.30 (EtOAc: hexanes = 1 : 10). NMR Spectroscopy: 'H NMR (500 MHz, CDCl; 25 °C, d):
7.43-7.32 (m, 10 H), 4.18 (s, 1H), 3.86 (s, 3 H). C NMR (125 MHz, CDCl;, 25 °C, §):
174.93(C), 141.87(C), 128.8(CH), 128.04(CH), 127.33(CH), 81.06(C), 53.52(CH;). Mass
Spectrometry: HRMS-FIA (m/z): Calcd for [C;sH ;405 + H], 243.1016. Found, 243.1016.

2-Hydroxy-2-methyl-1-(pyrrolidin-1-yl)butane-1,3-dione (17)

Q 0O 1 atm Oy, 5 % Pd;hpps, 30% hppH o Q
Me)ﬁ@ THF, 6°C i MQMD
To a solution of Pd,;hpp, (8 mg, 0.01 mmol, 0.05 equiv) and hppH (8.5 mg, 0.060 mmol, 0.30
equiv) in THF (2 mL) at 6 °C was added 2-methyl-1-(pyrrolidin-1-yl)butane-1,3-dione (34 mg,
0.20 mmol, 1.0 equiv) and the reaction mixture was stirred vigorously for 12 h at 6 °C under 1
atm of oxygen. Solvent was removed in vacuo and the residue was purified by chromatography
on silica gel eluting with CH,Cl, / MeOH (10:1) to afford 30 mg of compound 17 as a white solid
(80 % yield).
R;=0.20 (CH,Cl,: MeOH = 10 : 1). NMR Spectroscopy: 'H NMR (500 MHz, CDCl; 25 °C, §):
498 (s, 1 H), 3.54 (td, /=7 Hz, J=2 Hz, 2H), 3.47 (dt, J= 11 Hz, J=7 Hz, 1H), 3.29 (dt, /=11
Hz, J =7 Hz, 1H), 2.22 (s, 3 H), 1.91-1.79 (m, 4 H), 1.55 (s, 3 H). C NMR (125 MHz, CDCl;,
25 °C, 8): 206.67(C), 168.44(C), 80.91(C), 48.04(CH,), 47.00(CH,), 26.66(CH,), 24.35(CH,),
23.26(CH,), 21.61(CH3). Mass Spectrometry: HRMS-FIA (m/z): Caled for [CoHsNOs; + H],
186.1125. Found, 186.1127.

2-Hydroxy-2-methyl-1-phenylpropan-1-one (18)

o
Me 1 atm Oy, 10 % Pdshppy, 60% hppH

Ph » Ph CH
Me THF, 6°C Me® Me
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To a solution of Pd,;hpp, (19 mg, 0.025 mmol, 0.050 equiv) and hppH (21 mg, 0.15 mmol, 0.30
equiv) in THF (2 mL) at 6 °C was added 2-methyl-1-phenylpropan-1-one (148 mg, 1.00 mmol,
1.00 equiv) and the reaction mixture was stirred vigorously for 12 h at 6 °C under 1 atm of
oxygen. Then Pdhpp, (19 mg, 0.025 mmol, 0.05 equiv) and hppH (21 mg, 0.15 mmol, 0.30 equiv)
were added to the reaction mixture and stirred for 12 h at 6 °C under 1 atm of oxygen. Solvent
was removed in vacuo and the residue was purified by chromatography on silica gel eluting with
hexanes / EtOAc (4:1) to afford 131 mg of compound 18 as a colorless oil (80 % yield).

R;=0.25 (EtOAc: hexanes = 1 : 4). NMR Spectroscopy: 'H NMR (500 MHz, CDCl; 25 °C, §):
8.00 (d,J=7.5Hz, 1 H), 7.57 (t, /J=7.5Hz, 1 H), 7.47 (t, J=7.5Hz, 1 H), 4.07 (s, 1| H), 1.64 (s,
3 H). ®C NMR (125 MHz, CDCl;, 25 °C, 8): 204.76(C), 133.74(C), 132.96(CH), 129.61(CH),
128.45(CH), 76.24(C), 28.42(CHj3). Mass Spectrometry: HRMS-FIA (m/z): Calcd for [C,oH;,0,
+ Na], 187.0729. Found, 187.0712.

2-Benzyl-2-hydroxycyclohexanone (19)

(0]

1 atm 0,10 % Pd,hpps, 0.6 eqhppH OH

To a solution of Pd,;hpp, (19 mg, 0.025 mmol, 0.050 equiv) and hppH (21 mg, 0.15 mmol, 0.30
equiv) in THF (2 mL) at 6 °C was added 2-benzylcyclohexanone (188 mg, 1.00 mmol, 1.00 equiv)

and the reaction mixture was stirred vigorously for 12 h at 6 °C under 1 atm of oxygen. Then
Pd;hpps (19 mg, 0.025 mmol, 0.050 equiv) and hppH (21 mg, 0.15 mmol, 0.30 equiv) were added
to the reaction mixture and stirred for 12 h at 6°C under 1 atm of oxygen. Solvent was removed in
vacuo and the residue was purified by chromatography on silica gel eluting with hexanes / EtOAc
(6:1) to afford 138 mg of compound 19 as a white solid (68 % yield).

R;=0.20 (EtOAc: Hexanes = 1 : 6). NMR Spectroscopy: 'H NMR (500 MHz, CDCl; 25 °C, 8):
7.28-7.19 (m, 5 H), 3.85 (s, 1 H), 3.14 (d, /=14 Hz, 1 H), 2.98 (d, /= 14 Hz, 1 H), 2.73-2.66 (td,
J=14Hz, J=6 Hz, 1 H), 2.56-2.53 (m, 1 H), 2.23-2.16 (m, 2 H), 1.92-1.84 (m, 2 H), 1.75-1.63
(m, 2 H). ®C NMR (125 MHz, CDCls, 25 °C, 8): 213.13(C), 135.26(C), 130.00(CH), 128.15(CH),
126.88(CH), 79.20(C), 43.21(CH,), 40.32(CH,), 38.51(CH,), 27.91(CH;), 22.71(CH,). Mass
Spectrometry: HRMS-FIA (m/z): Calcd for [Ci3H;60, + Na], 227.1043. Found, 227.1039

(1-Hydroxycyclopentyl)(phenyl)methanone (20)

o (o}
1 atm O,, 10 % Pdshpp4, 60% hppH OH
Ph > Ph
THF, 6°C

To a solution of Pd,;hpps (19 mg, 0.025 mmol, 0.050 equiv) and hppH (21 mg, 0.15 mmol, 0.30
equiv) in THF (5 mL) at 6 °C was added cyclopentyl(phenyl)methanone (87 mg, 0.50 mmol, 1.0

equiv) and the reaction mixture was stirred vigorously for 12 h at 6°C under 1 atm of oxygen.
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Then Pdyhpp, (19 mg, 0.025 mmol, 0.050 equiv) and hppH (21 mg, 0.15 mmol, 0.30 equiv) were
added to the reaction mixture and stirred for 12 h at 6 °C under 1 atm of oxygen. Solvent was
removed in vacuo and the residue was purified by chromatography on silica gel eluting with
hexanes / EtOAc (4:1) to afford 57 mg of compound 20 as a colorless oil (60 % yield).

R;=0.50 (EtOAc: Hexanes = 1 : 4). NMR Spectroscopy: 'H NMR (500 MHz, CDCl; 25 °C, 8):
7.99-7.97 (m, 2 H), 7.57-7.47 (m, 3 H), 3.78 (s, 1 H), 2.41-2.35 (m, 2 H), 2.05-2.02 (m, 2 H),
1.94-1.90 (m, 4 H), . *C NMR (125 MHz, CDCl;, 25 °C, 8): 203.77(C), 133.86(C), 132.80(CH),
129.55(CH), 128.29(CH), 87.09(C), 40.87(CH,), 25.51(CH,). Mass Spectrometry: HRMS-FIA
(m/z): Calcd for [C1,H 40, + Na], 213.0886. Found, 213.0875.

tert-Butyl 3-(2-hydroxy-2-methyl-3-oxobutanoyl)-1H-indole-1-carboxylate (21)

o O
1 atm Oy, 5 % Pdshppy, 30% hppH
| Me - Me

| Mme” “oH
0,
N Me THF, 6°C N
Boc Boc

In THF: To a solution of Pd,hpp, (8 mg, 0.01 mmol, 0.05 equiv) and hppH (8.5 mg, 0.060 mmol,
0.30 equiv) in THF (2 mL) at 6 °C was added S1 (63 mg, 0.20 mmol, 1.0 equiv) and the reaction
mixture was stirred vigorously for 12 h at 6 °C under 1 atm of oxygen. Solvent was removed in
vacuo and the residue was purified by chromatography on silica gel eluting with CH,Cl, / MeOH
(10:1) to afford 46 mg of compound 21 as a white solid (70 % yield).

In toluene: To a solution of Pd;hpps (8 mg, 0.01 mmol, 0.05 equiv) and hppH (8.5 mg, 0.060
mmol, 0.30 equiv) in toluene (2 mL) at 6 °C was added S1 (63 mg, 0.20 mmol, 1.0 equiv) and the
reaction mixture was stirred vigorously for 12 h at 6 °C under 1 atm of oxygen. Solvent was
removed in vacuo and the residue was purified by chromatography on silica gel eluting with
CH,Cl, / MeOH (10:1) to afford 40 mg of compound 21 as a white solid (60 % yield).

R;=0.30 (CH,Cl,: MeOH = 10 : 1). NMR Spectroscopy: 'H NMR (500 MHz, CDCl; 25 °C, 8):
8.58 (d, J=2 Hz, 1H), 8.41-8.38 (m, 1 H), 8.15-8.13 (m, 1 H), 7.41-7.35 (m, 2 H), 5.18 (s, 1 H),
226 (s, 1 H), 1.75 (s, 3 H), 1.71 (s, 3 H). C NMR (125 MHz, CDCl;, 25 °C, §): 207.93(C),
193.29(C), 148.71(C), 135.37(CH), 134.83(C), 128.16(C), 125.75(CH), 124.72(CH), 122.59(CH),
114.96(CH), 114.94(C), 85.58(C), 85.75(C), 28.02(CH;), 24.74(CH;), 24.59(CH;). Mass
Spectrometry: HRMS-FIA (m/z): Calecd for [CisH, NOs + H], 332.1493. Found, 332.1496.

3,4-dihydro-2-hydroxy-2-(pent-4-enyl)naphthalen-1(2H)-one (22)
0 0

1 atm Oy, 5 % Pdyhpp4, 30% hppH OH
_ 2 o Fd2NPP4 o NPpp _ _
toluene, 6°C

To a solution of Pd,hpp, (19 mg, 0.025 mmol, 0.050 equiv) and hppH (21 mg, 0.15 mmol, 0.30
equiv) in toluene (5 mL) at 6 °C was added 2-allyl-1-tetralone (107 mg, 0.50 mmol, 1.0 equiv)
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and the reaction mixture was stirred vigorously for 12 h at 6 °C under 1 atm of oxygen. Solvent
was removed in vacuo and the residue was purified by chromatography on silica gel eluting with
hexanes / EtOAc (12:1) to afford 82 mg of compound 22 as a colorless oil (71 % yield).

R;=0.30 (hexanes : EtOAc =8 : 1). NMR Spectroscopy: 'H NMR (500 MHz, CDCl; 25 °C, 8):
8.01 (d,J=7.5Hz, 1 H),7.52(t,J=7.5Hz, 1 H),7.34 (t,/J=7.5Hz, 1 H), 7.25(d,J=7.5Hz, 1
H), 5.78-5.69 (m, 1 H), 4.95 (d, /=18 Hz, /=1 Hz, 1 H),4.91 (d, /=10 Hz, 1 H), 3.82 (s, 1 H),
3.08 (ddd, J=17.5 Hz,J=12.5 Hz, J= 5 Hz, 1 H), 3.01-2.97 (m, 1 H), 2.36-2.32 (m, 1 H), 2.15
(dt, /=13 Hz, J = 5.5 Hz, 1 H), 2.02-2.00 (m, 2 H), 1.72-1.65 (m, 1 H), 1.61-1.54 (m, 2 H),
1.46-1.40 (m, 1 H). °C NMR (125 MHz, CDCl;, 25 °C, 8): 201.82(C), 143.36(C), 138.16(CH),
133.92(CH), 130.17(C), 128.94(CH), 127.89(CH), 126.82(CH), 114.80(CH,), 75.57(C),
34.85(CH,), 33.81(CH,), 33.66(CH,), 26.47(CH,), 22.13(CH,),. Mass Spectrometry: HRMS-FIA
(m/z): Calcd for [Cy5H 30, + H], 231.1380. Found, 231.1382.

5-((3aR,6S,6aS)-Hexahydro-2-oxo-1H-thieno|[3,4-d]imidazol-6-yl)pentyl 2-hydroxy-2,2-
diphenylacetate (23)

0 (e}
HN™ 'NH 1 atm Oy, 5 % Pdyhppy, 0.3 eqghppH  HN™ "NH
H H Ph > H H Ph_ Ph
., THF, 0°C .
S "/\/\/oj(‘\Ph S ,,/\/\/O%OH
(0] (0]

To a solution of Pd,;hpp, (8 mg, 0.01 mmol, 0.05 equiv) and hppH (8.5 mg, 0.060 mmol, 0.30
equiv) in THF (2 mL) at 6°C was added S2 (85 mg, 0.20 mmol, 1.0 equiv) and the reaction
mixture was stirred vigorously for 12 h at 6°C under 1 atm of oxygen. Solvent was removed in
vacuo and the residue was purified by chromatography on silica gel eluting with CH,Cl, / MeOH
(10:1) to afford 82 mg of compound 23 as a white solid (93 % yield).

Ry=0.25 (CH,Cl,: MeOH = 10 : 1). NMR Spectroscopy: 'H NMR (500 MHz, CDCl; 25 °C, 3):
7.43-7.41 (m, 2 H), 7.35-7.30 (m, 3 H), 5.89 (s, 1 H), 5.29 (s, 1 H), 4.54 (s, 1 H), 4.43 (t, J=0.5
Hz, 1 H), 4.26-4.19 (m, 3 H), 3.04 (q, J= 0.5 Hz, 1H), 2.85 (dd, /= 1.5 Hz, J= 0.5 Hz, 1H), 2.65
(d, J=1.5Hz, 1H), 1.67-1.51 (m, 4 H), 1.36-1.19 (m, 4 H). °C NMR (125 MHz, CDCls, 25 °C,
8): 174.45(C), 163.63(C), 142.10(C), 128.03(CH), 127.95(CH), 127.26(CH), 81.05(C),
66.61(CH,), 61.87(CH), 60.05(CH), 55.46(CH), 40.49(CH,;), 28.37(CH;), 28.34(CH,),
28.04(CH,), 25.57(CH,). Mass Spectrometry: HRMS-FIA (m/z): Calcd for [C,4H,sN,04S + Na],
463.1662. Found, 463.1662.



Supporting Information S21

Pd,hpp,Cl; (S3)

N/P PhICl, ﬂ"‘ r
N/<\/ Pd CH5CN, 23 °C 4 2

To a suspension of Pd,;hpp, (535 mg, 0.700 mmol, 1.00 equiv) in acetonitrile (10 mL) at 23 °C
was added PhICl, (192 mg, 0.700 mmol, 1.00 equiv) and the reaction was stirred for 1 h at 23 °C.
Dark green precipitate from the reaction mixture was filtered over a glass fiber filter paper and
the solid residue was triturated with benzene (5 mL). The suspension was filtered over a glass
fiber filter paper, the dark green residue collected, and dissolved in CH,Cl,. Solvent was
removed in vacuo to afford 230 mg of compound S3 as a dark green solid (27 % yield). A crystal
of S3 was obtained by layering pentane onto a solution of S3 in CH,Cl, at 0 °C and the unit cell
parameter as determined by X-ray diffraction matched the reported data.’

NMR Spectroscopy: 'H NMR (500 MHz, CD,Cl, —50 °C, §): 3.90-3.84 (m, 8 H), 3.12-3.05 (m,
16 H), 2.93-2.88 (m, 8 H), 1.88-1.81 (m, 8 H), 1.72—1.65 (m, 8 H). °C NMR (1.25 MHz, CD,Cl,,
25 °C, d): 165.06, 48.83, 48.60, 25.98. UV-VIS Spectroscopy (CH,Cl,, 22 °C): 648 nm (¢ = 1.08
x 10° M em™); 324 nm (e = 3.30 x 10° M ecm™).

Pd;hpp(OBz), (24) (CCDC 784627)

(\ OBz
AgOBz /NK>

{‘/‘,\}//F’djﬁ‘\ CH,Cl,, -50 °C <N;<\/ /W// ‘

N

\) OBz

The following experiment was carried out in a nitrogen filled drybox: To a suspension of AgOBz

(205 mg, 0.900 mmol, 5.00 equiv) in CH,Cl, (5 mL) at —50 °C was added S3 (150 mg, 0.180

mmol, 1.00 equiv) and the reaction was stirred for 2 h at —50 °C. The reaction mixture was

filtered through a glass fiber filter paper at —50 °C . The filtrate was concentrated in vacuo at —50
°C to afford 150 mg of compound 24 as a dark green solid (83 % yield). The compound was
crystallized as dark green needles by diffusing pentane into a dichloromethane solution of 24 at —

50 °C for 72 h. For X-ray crystallographic data of 24 see x-ray section.

NMR Spectroscopy: 'H NMR (500 MHz, CDCl; —50 °C, 8): 8.03-8.01 (m, 4 H), 7.37-7.33 (m, 6
H), 3.41 (br, 16 H), 3.02 (br, 16 H), 1.80 (br, 16H). *C NMR (125 MHz, CDCl;, —50 °C, §):
168.66, 162.76, 138.32, 129.53, 129.23, 127.54, 48.40, 46.46, 24.61.
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Pd;hpp,(OCO"Pr); (S4)
0
o M, o
N,

,\: /NCN> AgOCO"Pr ﬂN,\J‘/Pd\/ NC,\?
N/<,\}// /W CH,Cly, -50 °C N ‘};/;'pd/!}'m //

</ CI <J ‘\N N

\) WO \)

The following experiment was carried out in a nitrogen filled drybox: To a suspension of
AgOCO"Pr (47 mg, 0.24 mmol, 5.0 equiv) in CH,Cl, (6 mL) at —50 °C was added S3 (40 mg,
0.050 mmol, 1.0 equiv) and the reaction mixture was stirred for 2 h at —50 °C. The reaction
mixture was filtered through a glass fiber filter paper at —50 °C. The residue was concentrated in

vacuo at —50 °C to afford 33 mg of compound S4 as a dark green solid (70 % yield).

NMR Spectroscopy: "H NMR (500 MHz, CDCl; —50 °C, 8): 3.29 (br, 16 H), 3.00-2.97 (m, 16 H),
2.13 (t,J=7Hz, 4 H), 1.76-1.72 (m, 16 H), 1.58-1.51 (m, 4 H), 0.84 (t, J=7 Hz, 6 H),"’C NMR
(125 MHz, CDCl;, —50 °C, 8): 176.69, 162.68, 48.43,46.01, 41.62, 24.43, 19.99, 14.09.

2-Hydroxy-2-phenyl-2H-indene-1,3-dione (S6)

0 0
1 atm 02, 5% Pdghpp4 OH
Ph -
benzene, 12h, 22 °C Ph
(o] ]

To a solution of Pd,hpp, (19 mg, 0.025 mmol, 0.050 equiv) benzene (5 mL) at 22 °C was added
2-phenyl-2H-indene-1,3-dione (111 mg, 0.500 mmol, 1.00 equiv) and the reaction mixture was
stirred vigorously for 12 h at 22 °C under 1 atm of oxygen. Solvent was removed in vacuo and the
residue was purified by chromatography on silica gel eluting with CH,Cl, / MeOH (20:1) to
afford 106 mg of compound 23 as a yellow solid (90 % yield).

R;=0.30 (CH,Cl,: MeOH = 20 : 1). NMR Spectroscopy: 'H NMR (500 MHz, CDCl; 25 °C, 8):
8.08 (dd, /=6 Hz, J=3 Hz, 2 H), 7.96-7.92 (m, 2 H), 7.42-7.39 (m, 2 H), 7.35-7.31 (m, 3 H),
3.30 (s, 1 H). ®C NMR (125 MHz, CDCls, 25 °C, 8): 197.88(C), 141.04(C), 136.65(CH),
136.50(C), 128.88(CH), 128.78(CH), 126.17(CH), 124.24(CH), 79.45(C). Mass Spectrometry:
HRMS-FIA (m/z): Calcd for [Cy5H;0O;3 + Na], 261.0522. Found, 261.0519.

2-Hydroxy-2-phenyl-2H-indene-1,3-dione (S7)

0 o
Ph\Ni?’/J 0,, 10% Mn(OAC); Ph\N

N N -
or AcOH, t, 2h o 0-OH
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A mixture of 4-butyl-1,2-diphenylpyrazolidine-3,5-dione (I mmol) and manganese(Ill) acetate
dihydrate (0.1 mmol) in glacial acetic acid (30 mL) was stirred at 23 °C for 2 h in air, and then the
reaction was quenched by adding water (25 mL) to the mixture. The aqueous reaction mixture
was extracted three times with dichloromethane (30 mL) and the combined extract was washed
with water, a saturated aqueous solution of sodium hydrogencarbonate, dried over anhydrous
sodium sulfate, and then concentrated to dryness. The residue was purified by recrystallization
from diethyl ether-hexane to afford 300 mg of compound S7 as a white solid (88 % yield).?

NMR Spectroscopy: 'H NMR (500 MHz, CDCl; 25 °C, 8): 9.02 (br, 1 H), 7.36-7.31 (m, 6 H),
7.25-7.20 (m, 4 H), 2.01-1.98 (m, 2 H), 1.44-1.32 (m, 4 H), 0.88 (t, J = 7.5 Hz, 3 H). °C NMR
(125 MHz, CDClIs, 25 °C, §): 168.72(C), 134.66(C), 128.90(CH), 127.37(CH), 123.23(CH),
85.02(C), 31.76(CH,), 24.11(CH,), 22.32(CH,), 13.34(CHj;). Mass Spectrometry: HRMS-FIA
(m/z): Caled for [C19H0N,O4 + H], 341.1501. Found, 341.1489.

4-Butyl-4-hydroxy-1,2-diphenylpyrazolidine-3,5-dione (S8)

o) 0
Ph\N 0,, 5% Pdshppy, 30% hppH Ph\N
| - |
o THF, 6°C, 3 h pr Y OH

O 0o

To a solution of Pd,hpp, (19 mg, 0.025 mmol, 0.050 equiv) and hppH (21 mg, 0.15 mmol, 0.30
equiv) in THF (6 mL) at 22 °C was added 2-phenyl-2H-indene-1,3-dione (154 mg, 0.500 mmol,
1.00 equiv) and the reaction mixture was stirred vigorously for 12 h at 6 °C under 1 atm of
oxygen. Solvent was removed in vacuo and the residue was purified by chromatography on silica
gel eluting with hexanes / EtOAc (2:1) to afford 75 mg of compound S8 as a yellow solid (46 %
yield).

R;=0.30 (hexanes : EtOAc =2 : 1). NMR Spectroscopy: 'H NMR (500 MHz, CDCl; 25 °C, 8):
7.33-7.28 (m, 8 H), 7.21-7.17 (m, 2 H), 3.83 (br, 1H), 2.07-2.03 (m, 2 H), 1.41-1.25 (m, 4 H),
0.87 (t,J=7 Hz, 3 H). "C NMR (125 MHz, CDCl;, 25 °C, 8): 170.36(C), 134.96(C), 129.03(CH),
127.16(CH), 122.67(CH), 74.07(C), 37.36(CH;), 24.53(CH,), 22.51(CH,), 13.64(CH;). Mass
Spectrometry: HRMS-FIA (m/z): Calcd for [Ci9H,0N,O3 + H], 325.1552. Found, 325.1535

C—-H oxidation of acidic methylene groups

Oxidation of unsubstituted malonates and 1,3-diketones with 1 afforded mixtures of products and
recovered starting materials. The only case in which we were able to isolate the a-oxidized

product was the oxidation of benzyl phenylketone to benzil:
Benzil (S5)

0 1 atm Oy, 10 % Pdshppy
Ph > Ph °
THF, 0°C

Ph
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To a solution of Pd,hpp, (77 mg, 0.10 mmol, 0.10 equiv) at 6 °C was added benzyl phenylketone
(196 mg, 1.00 mmol, 1.00 equiv) and the reaction mixture was stirred for 12 h at 6 °C under 1 atm
of oxygen. Solvent was removed in vacuo and the residue was purified by chromatography on
silica gel eluting with hexanes / EtOAc (4:1) to afford 140 mg of S5 as a pale yellow solid (67 %
yield).

R;=0.25 (hexanes: EtOAc = 4 : 1). NMR Spectroscopy: 'H NMR (500 MHz, CDCl; 25 °C, 8):
7.98 (d, J=7.5Hz, 8 H), 7.67 (t, J= 7.5 Hz, 4 H), 7.52 (t, J= 7.5 Hz, 8 H). *C NMR (125 MHz,
CDCl;, 25 °C, 0): 194.52, 134.83, 132.92, 129.82, 128.96.

Oxygen uptake experiment

The oxygen uptake experiments of Pdyhpps catalyzed o-hydroxylation of 2-acetyl-3,4-
dihydronaphthalen-1(2H)-one (S9) were done on 1, 0.5, 0.3 and 0.15 mmol of the starting

material. (Table S4) The following procedure describes experiment done on 0.5 mmol scale:

o 0 0,, 2.5% Pd,hpps Q2 oH o
@A benzene, 22 °C ©ij_/<
S9 5

To a 100 mL Schlenk tube equipped with magnetic stirring bar at 22 °C was added a solution of 1
(9.6 mg, 0.013 mmol, 0.025 equiv) in benzene (5 mL). The solution was stirred under 1 atm of O,
for 10 min after which a solution of S9 (94 mg, 0.50 mmol, 1.0 equiv) in benzene (1 mL) was
added. The Schlenk tube was closed immediately with a threaded Teflon stopcock and the
reaction mixture was stirred for 12 hr at 22 °C. The sidearm of the Schlenk tube was connected to
the apparatus shown in following figure and the oil levels at both ends were equilibrated.’ The
stopcock was marginally opened to allow a steady change in oil levels and the movable arm was
adjusted to regulate atmospheric pressure inside the Schlenk tube. O, uptake readings were
completed by comparing oil levels before and after the opening of the Schlenk tube.

* Appleton, T. G. J. Chem. Educ. 1977, 54, 443.
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Figure S1. Oxygen uptake measurement setup

Oxygen — Graduated tube

reaction mixture—-

] 1Movable arm
Oil -]

Table S4. Result of Oxygen uptake experiments

Entry Reaction scale Isolated product Yield (%) O, uptake Equiv of O,
(mmol of SM) (mg) (mL)
1 1 140 69 10 0.59
2 1 150 74 9.6 0.54
3 1 130 64 8.2 0.53
4 1 130 64 8.5 0.54
5 0.5 82 80 4.8 0.50
6 0.5 82 80 4.7 0.48
7 0.5 80 78 5.6 0.59
8 0.5 75 74 4.4 0.49
9 0.3 56 90 3.6 0.56
10 0.3 51 83 3.5 0.56
11 0.3 48 80 3.0 0.50
12 0.3 56 90 34 0.52
13 0.15 27 87 1.6 0.51
14 0.15 29 93 1.6 0.47
15 0.15 27 87 1.5 0.48

The correlation of equivalent of O, consumed versus reaction scale (in mmol of isolated product)
is shown in following plot.
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O isotope experiment
o) o)
HN™ "NH 1 atm "80,, 5 % Pd,hppy4, 0.3 eq hppH HN” “NH
H H Ph > H H Ph Ph
. THF, 0°C .
s "'/\/\/Oj(kph s "'/\/\/OjﬂaoH
o} o}

80 was purchased from Cambridge Isotope with 98 % isotopic purity. The experiment was
carried out according to the procedure reported for the oxidation of S2 to 23 under 1 atm of '*0s.
The percentage of '®O enrichment was examined by mass spectrometry as shown in following
figure. The data calculated for 97 % 'O enrichment of 23.
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Figure S2. Mass spectrometry measurement of '*O enrichment 23
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Experiments with mononuclear Palladium complexes

S11, PdCly(hppH),,® and S12, Pd(TPA),’ were tested in following reaction for their reactivity in
the a-hydroxylation reaction of S9. PdCl,(hppH), is a known Pd complex with two hppHs as L-
type ligands. Pd(TPA), is a mononuclear complex featuring two chelating amidates. Starting

material was recovered in both reactions with no product formation.

o

S9

CeDs, 0 °C, 12h

HN

¢ )N
@ N—lzc:—N\_) Ph
LN

H

S$11, PdCl,(hppH),

® Oakley, S. H.; Coles, M. P.; Hitchcock P. B. Inorg. Chem. 2004, 43, 7564.
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" Berry, J. F.; Cotton, F. A_; Ibragimov, S. A.; Murillo, C. A.; Wang X. Inorg. Chem. 2005, 44, 6129.
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UV-vis Data

Figure S3. UV-VIS Spectrum of Pd,;hpp,Cl,(S3)in CH,Cl, at 22 °C
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Figure S4. Molar Absorptivity Determination at 324nm
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Figure S5. Molar Absorptivity Determination at 648nm
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Figure S6. UV-VIS Spectrum comparison of 1-catalyzed a-hydroxylation of 3 (1) with
dimeric Pd(III) complexes derived from 1
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UV absorption spectrum of 1, 3, 24, S3, S4 and 1+3 in THF were measured in following
concentration and temperature: 1: 0.005M at 0 °C; 3: 0.03M at 0 °C; 24: 0.001M at —78 °C; S3:
0.001M at 0 °C; S4: 0.001M at —78°C; 1+ 3 : 0.003M of 1 and 0.03M of 3 (degassed) at 0 °C.

UV absorption measurement of reaction mixture of eq 1:

To a 0.03M solution of 3 (2mL) in THF at 0 °C in a cuvette was added 0.6 mL of 0.005M THF
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solution of 1 at 0 °C. The solution was bubbled with O, for 5 sec and the UV absorption was

measured.

Figure S7. UV-VIS Spectrum comparison of 1-catalyzed o-hydroxylation of S9 (S1) with 24
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UV absorption measurement of reaction mixture of eq S1:

To a 0.02M solution of S9 (1.8 mL) in benzene at 22 °C in a cuvette was added 0.2 mL of 0.01M
benzene solution of 1 at 22 °C. The solution was bubbled with O, for 5 sec and the UV-vis

absorption was measured.

Q 0 0,,5% 1 ? oH o
(1)
benzene, 22 °C
s9 5
DFT Computations

Density functional theory (DFT) calculations were performed using Gaussian09® at the Odyssey

8 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.;
Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; , J.
A. Montgomery, J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd; J. J. Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Normand; J.

Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Cossi, J. M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.;

Bakken, V.; Adam, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J.
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cluster at Harvard University. S3 was used as the compound in the DFT computation due to the
simpler structure compared to 24 and S4. All three of complexes 24, S3, and S4 display similar
UV-vis absorptions at around 650 nm. Geometry optimizations were carried out using the atomic
coordinates of the crystal structure of S3* as a starting point with the B3PW91° hybrid functional.
B3LYP'" and and M06'' hybrid functionals used the optimized structure of 83 with B3PW91 as a
starting point. The unrestricted wave function was used for the singlet ground state of S3. BS I
includes SDD quasirelativistic pseudopotentials on Pd (28) and CI (10) with basis sets (Pd:
(8s7p6d)/[6s5p3d]'?; Cl: (4s5p)/[2s3p]") extended by polarization functions (Pd: f, 1.472"; CI: d,
0.640"), and 6-31G(d,p)'° on H, C, N. All geometry optimizations were performed using the
above functionals with the BS I basis set, followed by frequency calculations on each optimized
structure with corresponding functional/BS 1. Time-dependent density functional theory'’ (TD-
DFT) calculations were performed using the above functionals and BS I on the geometry
optimized in vacuum by the above functionals with the BS I basis set. TD-DFT calculations were
also carried out on B3P86'® and mPW1PW91 " functionals with the BS I basis set using the
optimized structure of S3 with B3PWO91. Molecular orbitals of S3 were generated using an
isosurface value of 0.02 on the optimized structure of S3 with B3PW91/BS 1. UV-vis spectrum
was simulated by GaussView5.>

W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels; A. D. Farkas,

O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski; J. Fox, D. J. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford CT, 2009.
? (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. (b) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244-13249.

' Kohn, W.; Becke, A. D.; Part, R. G., J. Phys. Chem. 1996, 100, 12974-12980.

' Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157-167.

12 (a) Andrae, D.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 123-141. (b) Andrae, D.;
Héussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1991, 78, 247-266.

"3 Bergner, A.; Dolg, M.; Kiichle, W.; Stoll, H.; Preuss, H. Mol. Phys. 1993, 30, 1431-1441.

'“ Ehlers, A. W.; Bohme, M.; Dapprich, S.; Gobbi, A.; Hollwarth, A.; Jonas, V.; Kéhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking,

G. Chem. Phys. Lett. 1993, 208, 111-114.

' Hollwarth, A.; Bohme, M.; Dapprich, S.; Ehlers, A. W.; Gobbi, A.; Jonas, V.; Kohler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking,
G. Chem. Phys. Lett. 1993, 208, 237-240.

'® Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213-222.

'7 Stratmann, R. E.; Scuseria, G. E.; Frisch, M. . J. Chem. Phys. 1998, 109, 8218-8224.
'8 Perdew, J. P. Phys. Rev. B 1986, 33, 8822-8824.

1 Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664-675.
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Table S5. The optimized structure of S3 with B3PW91/BS I and cartesian coordinates (A)
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Table S6. Metric comparison between DFT optimized and X-ray determined structure of S3.

functional/BS 1 Pd-Pd (A) Pd-N (A) Pd-Cl (A)
X-ray data 2.39 2.03 2.47
B3PW91 2.42 2.04 2.51
MO06 2.44 2.05 2.51
B3LYP 2.44 2.06 2.54

Table S7. Experimental and calculated absorption spectra (TD-DFT) of S3.

functional/BS I wavelength (nm) transition oscillator
strength
experimental 648
B3PW91“ 770 MO 174 —- MO 176 0.009
mPWIPW91“ 673 MO 174 —- MO 176 0.015
B3P86“ 702 MO 174 — MO 176 0.013
B3LYP! 763 MO 174 —- MO 176 0.009
MO06” 721 MO 174 —- MO 176 0.012

“ TD-DFT was performed on the optimized structure of 83 with B3PW91/BS 1. ” TD-DFT was
performed on the optimized structure of S3 with M06/BS 1.
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Figure S8. Simulated UV-VIS Spectrum of S3 with TD-mPWI1PW91/BS 1 using the
optimized structure of S3 with B3PW91/BS 1.
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Calculated absorption band of S3 corresponds to HOMO-1—> LUMO transition.*'

2! Cotton, F. A.; Koshevoy, 1. O.; Lahuerta, P.; Murillo, C. A.; Sanau’, M.; Ubeda, M. A_; Zhao, Q. L. J. Am. Chem. Soc. 2006, 128,

13674.
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Figure S9. Molecular orbitals of S3

MO 174 (HOMO-1) MO 175 (HOMO) MO 176 (LUMO)

Molecular orbital plots of the HOMO-1, HOMO and the LUMO for the S3 shown along the Pd-
Pd axis. HOMO-1 and LUMO have antibonding characters on the Pd-Cl interaction.”'

Discussion of the result of DFT calculation

We have computationally investigated the transition that corresponds to the observed UV-vis
absorption of S3 at 648 nm. During geometry optimizations, the B3PW91 functional was found to
provide the best agreement between computed and experimentally determined Pd—Pd distance
(2.42 A (computed) versus 2.39 A (experimental) as shown in Table S6). The UV-vis absorption
band of S3 was calculated based on the optimized structures of S3 (as shown in Table S7). The
computed absorption maxima were found to differ over a range of 673 to 770 nm depending on
the functional employed. Despite these differences, all of the calculated absorptions were found
to be composed of the excitation of MO 174 (HOMO -1) to MO 176 (LUMO). As shown in
Figure S9, MO 174 has a Pd—Pd bonding character with participation of the ligand backbone. And
the MO 176 is a Pd—Pd antibonding orbital. Thus the DFT calculation result has shown that the
observed UV-vis feature of S3 at 648 nm is likely a result of metal-metal bonding to metal-metal
antibonding transition, which also has been observed from the UV-vis spectrum of dinuclear
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Pd(IIT) complexes 24, S4 and the reaction mixture of eq 1 and eq S1. The result is also in accord
with TD-DFT calculation of UV absorptions of dinuclear Pd(III) complex reported by Cotton.*!

Electrochemical Data
Cyclic Voltammetry of 1

80 (I | S S | S A IS S S (S N - N N |

Nowv. 18, 2010
r Tech: CV
= File: Pd2hpp4

i Init E (V) =-0.3

L High E (V) =1

[ Low E (V) =-0.3

L Init PN = P

r Scan Rate (V/s) = 0.1
Segment = 3
Smpl Interval (V) = 0.0
Quiet Time (s) =2
Sensitivity (A/V) = 1e-!

6.0
40 ]
201

Segment 1:

[ Ep = 0.241V

L. ip =-8.288e-6A
[ Ah =-6.002e-6C
[ Ep = 0.703V

ip = -3.696e-6A
Ah =-3.197e-6C

Current / le-6A

1 Segment 2:
Z l Ep =0.151V

q00 4 ip = 6.850e-6A

1.0 0.8 06 0.4 0.2 0 0.2 0.4 Ah=40913e6C

Potential / V

The CV of 1 was obtained from a 0.01 mM solution of 1 in CH,Cl, with a glassy carbon working
electrode. NBuy-PF4 (0.1 M) was used as the electrolyte. The CV was obtained at a scan rate of
0.1 V/s against Ag/AgCl and was confirmed external standard of ferrocene.

The reversible oxidation wave at E;, = -304 mV (vs Fc/Fc+) is assigned to the Pd(I)-Pd(II) to
PA(I1)-Pd(II) redox couple. The irreversible oxidation wave at 203 mV (vs. Fc/Fc+) is assigned
to the oxidation of Pd(II)-Pd(III) to Pd(III)-Pd(IIl). For comparison, most bimetallic palladium
complexes were reported to have first oxidation wave at 250~500 mV (vs Fc/Fc+) and second
wave at 500~1000 mV (vs Fc/Fct).” 2

2 powers, D. C.; Geibel, M. A. L.; Klein, J. E. M. N.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 17050.
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Electron Paramagnetic Resonance

hydroxylation of S9
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TITLE GIC-TV-297
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AXIS DATA FORMAT
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Microwave Frequency [Hz]  9.34630%e+03
Pows 5

3420

0y, 10% 1
@ij/u\ benzene, 22 °C

S9

OOH 0

To a solution of 1 (7 mg, 0.01 mmol, 0.1 equiv) in benzene (2 mL) at 22 °C was added S9 (19 mg,

0.10 mmol, 1.0 equiv). The solution was stirred under 1 atm of O, for 1 min at 23 °C and moved

into a liquid nitrogen bath. A Freeze-Pump-Thaw procedure was applied to the reaction mixture.

The solution was transferred to a 4 mm EPR tube and sealed under N, atmosphere. The EPR data

was collected on a Bruker ESP300E operating at X-band frequency (9 GHz). q value of the

sample at frozen 77 K was measured at 2.0088. EPR signals of known Pd,”" complexes in paddle

construction with amidate ligands were reported at q = 2.010~2.014 in X-band.*

s (a) Cotton, F. A.; Matusz, M.; Poli, R.; Feng, X. J. Am. Chem. Soc. 1988, 110, 1144. (b) Berry, J. F.; Bill, E.; Bothe, E.; Cotton, F.

A.; Dalal, N. S.; Ibragimov, S. A.; Kaur, N.; Liu, C. Y.; Murillo, C. A.; Nellutla, S.; North, J. M.; Villagra’ n, D. J. Am. Chem. Soc.

2007, 129, 1393.
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Spectroscopic Data

"H NMR spectrum of 1 in CDCl; at 23 °C
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3C NMR spectrum of 83 in CD,Cl, at 23 °C
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BC NMR spectrum of S4 in CD,Cl, at —50 °C
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"H NMR spectrum of S5 in CDCl; at 23 °C
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X-ray Crystallographic data of Pd,hpp4(OBz), (24) (CCDC 784627)
X-Ray Crystallography: A crystal mounted on a diffractometer was collected data at 100 K. The

intensities of the reflections were collected by means of a Bruker APEX II CCD diffractometer
(Mog,, radiation, A=0.71073 A), and equipped with an Oxford Cryosystems nitrogen flow
apparatus. The collection method involved 0.5° scans in wat 28° in 26. Data integration down to
0.82 A resolution was carried out using SAINT V7.46 A (Bruker diffractometer, 2009) with
reflection spot size optimisation. Absorption corrections were made with the program SADABS
(Bruker diffractometer, 2009). The structure was solved by the direct methods procedure and
refined by least-squares methods again F° using SHELXS-97 and SHELXL-97 (Sheldrick, 2008).
Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were allowed to ride on
the respective atoms. Crystal data as well as details of data collection and refinement are
summarized in Table S8, and geometric parameters are shown in Table S9. The Ortep plots
produced with SHELXL-97 program, and the other drawings were produced with Accelrys DS
Visualizer 2.0 (Accelrys, 2007).

Table S8. Experimental details

Pd;hpp4(OBz),
Crystal data
Chemical formula C46HeCIsN1,04Pd,
M, 1347.51

Crystal system, space group Orthorhombic, Pbca

Temperature (K) 100

a, b, c(A) 20.6200 (17), 20.3363 (16), 25.951 (2)
V(&) 10882.1 (15)

VA 8

Radiation type Mo Ko

p (mm™) 1.11

Crystal size (mm) 0.40 x 0.16 x 0.10

Data collection

Diffractometer CCD area detector diffractometer

Absorption correction Multi-scan
SADABS
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Tmins Tmax

0.665, 0.897

No. of measured, independent
and observed [/ > 20(])]

reflections

341623, 12050, 10466

Rint

0.048

Refinement

R[F* > 26(F%)], wR(F?), S

0.022, 0.054, 1.05

No. of reflections 12050
No. of parameters 649
No. of restraints 0

H-atom treatment

H-atom parameters constrained

Apmax: Apmin (e A-3)

0.65,-0.58

Computer programs: APEX2 v2009.3.0 (Bruker-AXS, 2009), SAINT 7.46A (Bruker-AXS, 2009),
SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Bruker SHELXTL.

Table S9. Selected geometric

parameters (A, °)

Pd1—N7 2.0228 (14) Cl6—H16B 0.9900
Pdl—N1 2.0376 (15) C21—C22 1.515 (2)
Pdl—N4 2.0405 (15) C21—H21A 0.9900
Pd1—N10 2.0522 (14) C21—H21B 0.9900
Pd1—O1 2.1805 (12) C22—C23 1.506 (3)
Pdl—Pd2 2.3991 (2) C22—H22A 0.9900
Pd2—N3 2.0257 (15) C22—H22B 0.9900
Pd2—N12 2.0261 (14) C23—H23A 0.9900
Pd2—N6 2.0373 (15) C23—H23B 0.9900
Pd2—NO9 2.0462 (14) C24—C25 1.509 (3)
Pd2—03 2.1854 (12) C24—H24A 0.9900
01—C41 1.281 (2) C24—H24B 0.9900
02—C41 1.234 (2) C25—C26 1.515 (2)
03—C51 1277 2) C25—H25A 0.9900
04—C51 1.239 (2) C25—H25B 0.9900
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N1—C7 1.329 (2) C26—H26A 0.9900
N1—C1 1.457 (2) C26—H26B 0.9900
N2—C7 1.369 (2) C31—C32 1.517 (2)
N2—C3 1.453 (2) C31—H31A 0.9900
N2—C4 1.458 (2) C31—H31B 0.9900
N3—C7 1.334 (2) C32—C33 1.511 (3)
N3—C6 1.452 (2) C32—H32A 0.9900
N4—C17 1.332(2) C32—H32B 0.9900
N4—Cl1 1.458 (2) C33—H33A 0.9900
N5—C17 1.371 (2) C33—H33B 0.9900
N5—CI13 1.459 (2) C34—C35 1.505 (3)
N5—Cl4 1.460 (2) C34—H34A 0.9900
N6—C17 1.333 (2) C34—H34B 0.9900
N6—C16 1.453 (2) C35—C36 1.509 (3)
N7—C27 1.335(2) C35—H35A 0.9900
N7—C21 1.467 (2) C35—H35B 0.9900
N8—C27 1.364 (2) C36—H36A 0.9900
N8—(C24 1.457 (2) C36—H36B 0.9900
N8—C23 1.460 (2) C41—C42 1.518 (3)
N9—C27 1.357 (2) C42—C43 1.388 (3)
N9—C26 1.460 (2) C42—C47 1.390 (3)
N10—C37 1.362 (2) C43—C44 1.396 (3)
N10—C31 1.464 (2) C43—H43A 0.9500
N11—C37 1.366 (2) C44—C45 1.375 (4)
N11—C33 1.457 (2) C44—H44A 0.9500
N11—C34 1.460 (2) C45—C46 1.380 (4)
N12—C37 1.333 (2) C45—H45A 0.9500
N12—C36 1.466 (2) C46—C47 1.386 (3)
Cl1—C2 1.519 (3) C46—H46A 0.9500
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Cl—HIA 0.9900 C47—H4TA 0.9500
Cl1—HIB 0.9900 C51—C52 1.517 (2)
C2—C3 1.511 3) C52—C53 1.392 (3)
C2—H2A 0.9900 C52—C57 1.393 (3)
C2—H2B 0.9900 C53—C54 1.390 (3)
C3—H3A 0.9900 C53—H53A 0.9500
C3—H3B 0.9900 C54—C55 1.385 (3)
C4—C5 1.510 (3) C54—H54A 0.9500
C4—H4A 0.9900 C55—C56 1.390 (3)
C4—H4B 0.9900 C55—H55A 0.9500
C5—C6 1.520 (3) C56—C57 1.389 (3)
C5—H5A 0.9900 C56—H56A 0.9500
C5—H5B 0.9900 C57—H57A 0.9500
C6—H6A 0.9900 ClS—ClIS 1.763 (2)
C6—H6B 0.9900 C1S—CI2S 1.769 (2)
Cl1—CI2 1.520 (3) CIS—HISA 0.9900
Cl1—HI1A 0.9900 C1S—HISB 0.9900
Cl1—H11B 0.9900 C2S—Cl48 1.759 (3)
C12—CI13 1.511 3) C28—CI3S 1.766 (2)
Cl2—HI2A 0.9900 C2S—H2SA 0.9900
Cl2—HI12B 0.9900 C2S—H2SB 0.9900
CI3—HI3A 0.9900 C3S—CI5S 1.771 (2)
C13—HI3B 0.9900 C3S—Cl6S 1773 (2)
C14—CI15 1.515 (3) C3S—H3SA 0.9900
Cl4—H14A 0.9900 C3S—H3SB 0.9900
Cl4—H14B 0.9900 C4S—C17S 1.763 (2)
C15—Cl6 1.517 (3) C4S—CI8S 1.772 (2)
C15—HI5A 0.9900 C4S—H4SA 0.9900
C15—HI15B 0.9900 C4S—H4SB 0.9900
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Cl6—HI16A 0.9900
N7—Pd1—N1 173.79 (6) N6—C17—N5 119.63 (16)
N7—Pd1—N4 88.03 (6) N7—C21—C22 111.19 (15)
N1—Pd1—N4 89.74 (6) N7—C21—H21A 109.4
N7—Pd1—N10 93.73 (6) C22—C21—H21A 109.4
N1—Pd1—N10 87.76 (6) N7—C21—H21B 109.4
N4—Pd1—N10 172.49 (6) C22—C21—H21B 109.4
N7—Pd1—Ol 96.09 (5) H21A—C21—H21B  |108.0
N1—Pd1—O1 89.74 (5) C23—C22—C21 108.12 (15)
N4—Pd1—Ol 91.11 (5) C23—C22—H22A 110.1
N10—Pd1—O1 95.96 (5) C21—C22—H22A 110.1
N7—Pd1—Pd2 86.75 (4) C23—C22—H22B 110.1
N1—Pd1—Pd2 87.32 (4) C21—C22—H22B 110.1
N4—Pd1—Pd2 86.09 (4) H22A—C22—H22B  |108.4
N10—Pd1—Pd2 86.72 (4) N8—(C23—C22 109.82 (15)
O1—Pd1—Pd2 175.94 (3) N8—C23—H23A 109.7
N3—Pd2—NI12 87.60 (6) C22—C23—H23A 109.7
N3—Pd2—N6 89.86 (6) N8—C23—H23B 109.7
N12—Pd2—N6 174.34 (6) C22—C23—H23B 109.7
N3—Pd2—N9 173.14 (6) H23A—C23—H23B  [108.2
N12—Pd2—N9 93.04 (6) N8—C24—C25 110.48 (15)
N6—Pd2—N9 88.88 (6) N8—C24—H24A 109.6
N3—Pd2—O03 89.81 (5) C25—C24—H24A 109.6
N12—Pd2—03 96.78 (5) N8—C24—H24B 109.6
N6—Pd2—03 88.27 (5) C25—C24—H24B 109.6
N9—Pd2—O03 96.89 (5) H24A—C24—H24B  [108.1
N3—Pd2—Pdl 86.39 (4) C24—C25—C26 107.53 (15)
N12—Pd2—Pdl 87.28 (4) C24—C25—H25A 110.2
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N6—Pd2—Pd1 87.51 (4) C26—C25—H25A 110.2
N9—Pd2—Pdl 86.82 (4) C24—C25—H25B 110.2
03—Pd2—Pd1 174.33 (3) C26—C25—H25B 110.2
C41—01—Pd1 134.11 (12) H25A—C25—H25B  [108.5
C51—03—Pd2 136.39 (11) N9—C26—C25 109.35 (15)
C7—N1—Cl1 118.94 (15) N9—C26—H26A 109.8
C7—N1—Pdl 117.05 (12) C25—C26—H26A 109.8
C1—NI1—Pd1 122.96 (12) N9—C26—H26B 109.8
C7—N2—C3 122.83 (16) C25—C26—H26B 109.8
C7—N2—C4 123.40 (16) H26A—C26—H26B  |108.3
C3—N2—C4 113.43 (15) N7—C27—N9 118.43 (15)
C7—N3—C6 117.43 (15) N7—C27—N8 120.45 (16)
C7—N3—Pd2 119.90 (12) N9—C27—N8 121.02 (16)
C6—N3—Pd2 121.36 (12) N10—C31—C32 109.23 (15)
C17—N4—Cl1 118.85 (15) N10—C31—H31A 109.8
C17—N4—Pd1 119.76 (12) C32—C31—H31A 109.8
C11—N4—Pdl 121.38 (11) N10—C31—H31B 109.8
C17—N5—C13 123.14 (15) C32—C31—H31B 109.8
C17—N5—Cl4 123.27 (15) H31A—C31—H31B  |108.3
C13—N5—Cl4 113.10 (15) C33—C32—C31 107.25 (15)
C17—N6—C16 118.25 (15) C33—C32—H32A 110.3
C17—N6—Pd2 117.82 (12) C31—C32—H32A 110.3
C16—N6—Pd2 123.78 (12) C33—C32—H32B 110.3
C27—N7—C21 119.32 (15) C31—C32—H32B 110.3
C27—N7—Pd1 119.48 (12) H32A—C32—H32B  [108.5
C21—N7—Pd1 116.36 (11) N11—C33—C32 110.75 (15)
C27—N8—(24 123.26 (15) N11—C33—H33A 109.5
C27—N8—C23 122.74 (15) C32—C33—H33A 109.5
C24—N8—C23 114.00 (15) N11—C33—H33B 109.5
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C27—N9—C26 116.65 (14) C32—C33—H33B 109.5
C27—N9—Pd2 111.73 (11) H33A—C33—H33B  [108.1
C26—N9—Pd2 115.41 (11) N11—C34—C35 110.05 (15)
C37—N10—C31 115.84 (14) N11—C34—H34A 109.6
C37—N10—Pd1 111.58 (11) C35—C34—H34A 109.6
C31—N10—Pd1 115.23 (11) N11—C34—H34B 109.6
C37—N11—C33 123.48 (15) C35—C34—H34B 109.6
C37—N11—C34 122.52 (15) H34A—C34—H34B  [108.2
C33—N11—C34 113.61 (15) C34—C35—C36 107.71 (16)
C37—N12—C36 119.12 (15) C34—C35—H35A 110.2
C37—N12—Pd2 118.92 (12) C36—C35—H35A 110.2
C36—N12—Pd2 116.46 (11) C34—C35—H35B 110.2
N1—C1—C2 109.34 (15) C36—C35—H35B 110.2
N1—C1—HIA 109.8 H35A—C35—H35B  |108.5
C2—Cl1—HIA 109.8 N12—C36—C35 112.17 (15)
N1—Cl1—HIB 109.8 N12—C36—H36A 109.2
C2—Cl1—HIB 109.8 C35—C36—H36A 109.2
HIA—C1—HIB 108.3 N12—C36—H36B 109.2
C3—C2—Cl 107.89 (16) C35—C36—H36B 109.2
C3—C2—H2A 110.1 H36A—C36—H36B  |107.9
Cl—C2—H2A 110.1 N12—C37—N10 118.75 (15)
C3—C2—H2B 110.1 N12—C37—N11 120.81 (16)
Cl1—C2—H2B 110.1 N10—C37—NI11 120.41 (16)
H2A—C2—H2B 108.4 02—C41—01 127.10 (17)
N2—C3—C2 111.71 (16) 02—C41—C42 118.82 (17)
N2—C3—H3A 109.3 01—C41—C42 114.09 (16)
C2—C3—H3A 109.3 C43—C42—C47 119.05 (19)
N2—C3—H3B 109.3 C43—C42—C41 121.63 (18)
C2—C3—H3B 109.3 C47—C42—C41 119.32 (19)
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H3A—C3—H3B 107.9 C42—C43—C44 120.3 (2)
N2—C4—C5 113.17 (16) C42—C43—H43A 119.9
N2—C4—H4A 108.9 C44—C43—H43A 119.9
C5—C4—H4A 108.9 C45—C44—C43 119.9 (2)
N2—C4—H4B 108.9 C45—C44—H44A 120.1
C5—C4—H4B 108.9 C43—C44—H44A 120.1
H4A—C4—H4B 107.8 C44—C45—C46 120.4 (2)
C4—C5—C6 110.39 (16) C44—C45—HA45A 119.8
C4—C5—H5A 109.6 C46—C45—H45A 119.8
C6—C5—H5A 109.6 C45—C46—C47 120.0 (2)
C4—C5—H5B 109.6 C45—C46—HA6A 120.0
C6—C5—H5B 109.6 C47—CA46—HA6A 120.0
H5A—C5—H5B 108.1 C46—C47—C42 120.5 (2)
N3—C6—C5 108.30 (16) C46—C4T—HATA 119.8
N3—C6—H6A 110.0 C42—C47—H4ATA 119.8
C5—C6—H6A 110.0 04—C51—03 127.09 (17)
N3—C6—H6B 110.0 04—C51—C52 118.74 (16)
C5—C6—H6B 110.0 03—C51—C52 114.16 (15)
H6A—C6—H6B 108.4 C53—C52—C57 118.97 (17)
N1—C7—N3 120.10 (16) C53—C52—C51 121.03 (16)
N1—C7—N2 120.84 (17) C57—C52—C51 119.97 (17)
N3—C7—N2 119.05 (16) C54—C53—C52 120.43 (18)
N4—C11—CI2 108.91 (15) C54—C53—H53A 119.8
N4—C11—HI11A 109.9 C52—C53—H53A 119.8
Cl2—Cl1—HI11A 109.9 C55—C54—C53 120.20 (19)
N4—C11—H11B 109.9 C55—C54—H54A 119.9
Cl12—C11—HI11B 109.9 C53—C54—H54A 119.9
HIIA—CI1—HIIB  [108.3 C54—C55—C56 119.84 (18)
C13—C12—Cl1 108.51 (15) C54—C55—H55A 120.1
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CI13—CI12—HI12A 110.0 C56—C55—HS55A 120.1
Cl1—CI2—HI2A 110.0 C57—C56—C55 119.89 (18)
CI13—C12—HI12B 110.0 C57—C56—H56A 120.1
Cl1—CI12—HI2B 110.0 C55—C56—H56A 120.1
HI2A—CI12—HI12B 108.4 C56—C57—C52 120.66 (18)
N5—CI13—C12 111.73 (15) C56—C57—HS7A 119.7
N5—CI13—HI13A 109.3 C52—C57—HST7A 119.7
CI12—C13—HI13A 109.3 Cl1S—C1S—CI2S 111.27 (12)
N5—CI13—HI13B 109.3 Cl1S—CIS—HISA 109.4
C12—C13—H13B 109.3 CI2S—CIS—HI1SA 109.4
HI3A—CI13—HI13B 107.9 Cl1S—C1S—HI1SB 109.4
N5—C14—C15 112.58 (15) C12S—C1S—HISB 109.4
N5—C14—HI14A 109.1 HISA—C1S—HISB 108.0
CI15—Cl14—H14A 109.1 Cl4S—C2S8—CI3S 111.41 (12)
N5—C14—H14B 109.1 Cl4S—C2S—H2SA 109.3
C15—Cl14—H14B 109.1 CI3S—C2S—H2SA 109.3
H14A—C14—H14B 107.8 Cl4S—C2S—H2SB 109.3
Cl14—C15—C16 108.69 (16) CI3S—C2S—H2SB 109.3
Cl14—Cl15—HI15A 110.0 H2SA—C2S5—H2SB 108.0
Cl16—C15—HI15A 110.0 CI5S—C3S—Cl6S 110.25 (11)
Cl14—C15—H15B 110.0 CI5SS—C3S—H3SA 109.6
Cl16—C15—H15B 110.0 Cl6S—C3S—H3SA 109.6
HI5A—CI15—HI15B 108.3 CI5S—C3S—H3SB 109.6
N6—C16—C15 109.26 (15) Cl6S—C3S—H3SB 109.6
N6—C16—HI16A 109.8 H3SA—C3S—H3SB 108.1
CI5—Cl16—HI16A 109.8 Cl7S—C4S—CIS8S 110.74 (11)
N6—C16—H16B 109.8 Cl7S—C4S—HA4SA 109.5
Cl15—Cl6—H16B 109.8 CI8S—C4S—HA4SA 109.5
H16A—C16—H16B 108.3 Cl7S—C4S—HA4SB 109.5
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N4—C17—N6 119.79 (16) CI8S—C4S—H4SB 109.5
N4—C17—N5 120.56 (16) H4SA—C4S—H4SB  |108.1
N7—PdI—Pd2—N3  |156.36 (6) C6—N3—C7—N2 -18.9(2)
N1—Pd1—Pd2—N3  [-21.80 (6) Pd2—N3—C7—N2 173.97 (12)
N4—Pdl—Pd2—N3  |68.12 (6) C3—N2—C7—NI 7.6 3)
N10—Pd1—Pd2—N3  [-109.70 (6) C4—N2—C7—NI 165.24 (18)
N7—Pd1—Pd2—N12  [-115.87 (6) C3—N2—C7—N3 172.84 (17)
N1—Pd1—Pd2—N12 |65.96 (6) C4—N2—C7—N3 -14.3 (3)
N4—Pd1—Pd2—N12  [155.88 (6) C17—N4—C11—Cl12  |45.6 (2)
N10—Pd1—Pd2—N12 [-21.94 (6) Pdl—N4—CI1—C12  |-135.10(13)
N7—PdI—Pd2—N6  |66.35 (6) N4—C11—CI2—C13  |-60.40 (19)
N1—Pdl—Pd2—N6  [-111.82 (6) C17—N5—CI13—C12  |-12.5(3)
N4—Pd1—Pd2—N6  |-21.90 (6) Cl14—N5—CI3—Cl12 [175.38 (16)
N10—Pd1—Pd2—N6  [160.28 (6) Cl11—C12—CI3—N5 [44.3(2)
N7—Pd1—Pd2—N9  [-22.67 (6) C17—N5—C14—C15 (0.2 (3)
N1—PdI—Pd2—N9  |159.17 (6) CI3—N5—CI4—C15 [172.30 (17)
N4—Pd1—Pd2—N9  [-110.92 (6) N5—C14—CI15—Cl16  |36.6(2)
N10—Pd1—Pd2—N9  [71.26 (6) C17—N6—C16—Cl15 |48.3(2)
N7—PdI—O1—C41  |36.54 (16) Pd2—N6—C16—C15 |-127.21 (14)
N1—Pd1—O1—C41  [-145.59 (16) Cl14—C15—C16—N6 |-59.8 (2)
N4—Pdl—O01—C41  |124.68 (16) Cl1—N4—CI17—N6  [169.32 (16)
N10—Pd1—O1—C41 |-57.87 (16) Pdl—N4—CI17—N6  [-10.0(2)
N3—Pd2—03—C51  [119.33 (17) Cl1—N4—C17—N5  |-12.2(3)
N12—Pd2—03—C51 |31.78 (17) Pdl—N4—CI17—N5  [168.42 (13)
N6—Pd2—03—C51  [-150.80 (17) C16—N6—C17—N4  |168.30 (16)
N9—Pd2—03—C51  [-62.14 (17) Pd2—N6—CI7—N4  |-16.0 (2)
N4—Pdl—N1—C7  [-57.20 (14) Cl16—N6—CI7—N5  |-10.2 (2)
N10—Pd1—N1—C7  [115.71 (14) Pd2—N6—CI17—N5  |165.58 (13)
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O1—Pd1—N1—C7  |-148.31(13) CI3—N5—C17—N4  |-5.6 (3)
Pd2—Pdl—N1—C7  [28.89 (13) Cl4—N5—C17—N4  [165.77 (17)
N4—Pd1—N1—Cl 110.92 (14) CI13—N5—C17—N6  |172.88(17)
N10—Pdl—NI—C1  [-76.16 (14) Cl4—N5—CI7—N6  |-15.8 (3)
01—Pd1—N1—Cl 19.82 (14) C27—N7—C21—C22  |-27.0 (2)
Pd2—Pdl—NI—Cl  |-162.98 (14) Pdl—N7—C21—C22 |128.23 (13)
N12—Pd2—N3—C7  [-65.53 (14) N7—C21—C22—C23  |57.5(2)
N6—Pd2—N3—C7 109.41 (14) C27—N8—C23—C22 [16.4(2)
03—Pd2—N3—C7  |-162.33 (14) C24—N8—C23—C22  |-163.51 (16)
Pdl—Pd2—N3—C7  [21.89 (13) C21—C22—C23—N8  |-51.2(2)
N12—Pd2—N3—C6  [127.82 (14) C27—N8—C24—C25 [10.6 (2)
N6—Pd2—N3—C6  |-57.24 (14) C23—N8—C24—C25 |-169.51 (16)
03—Pd2—N3—C6  |31.02 (14) N8—C24—C25—C26  |-47.2(2)
Pdl—Pd2—N3—C6  |-144.76 (13) C27—N9—C26—C25 |-43.4(2)
N7—Pdl—N4—C17  [-62.63 (14) Pd2—N9—C26—C25 |-177.54 (11)
N1—Pd1—N4—C17  [111.57 (14) C24—C25—C26—N9  |64.32(19)
O1—Pd1—N4—C17  |-158.69 (14) C21—N7—C27—N9  [172.86 (15)
Pd2—Pd1—N4—C17 |24.24 (13) Pdl—N7—C27—N9  |18.4(2)
N7—Pd1—N4—C11  [118.03 (14) C21—N7—C27—N8  |-10.7 (2)
N1—Pdl—N4—C11  [-67.76 (14) Pdl—N7—C27—N8  [-165.20 (12)
O1—Pdl—N4—CI1  |21.97 (14) C26—N9—C27—N7  |-178.90 (15)
Pd2—Pdl—N4—C11 |-155.10 (13) Pd2—N9—C27—N7  |-43.11 (19)
N3—Pd2—N6—C17  |-59.24 (13) C26—N9—C27—N8 (4.7 (2)
N9—Pd2—N6—C17  [114.02 (13) Pd2—N9—C27—N8  |140.49 (14)
03—Pd2—N6—C17  |-149.05 (13) C24—N8—C27—N7  |-163.37 (16)
Pdl—Pd2—N6—C17 |27.16 (13) C23—N8—C27—N7  [16.7(3)
N3—Pd2—N6—C16  [116.26 (14) C24—N8—C27—N9  [13.0(3)
N9—Pd2—N6—C16  |-70.48 (14) C23—N8—C27—N9  |-166.94 (17)
03—Pd2—N6—CI16 2645 (14) C37—N10—C31—C32 |-45.3 (2)
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Pdl—Pd2—N6—C16 |-157.34 (14) Pd1—N10—C31—C32 |-178.11 (11)
N4—Pd1—N7—C27  [96.73 (13) N10—C31—C32—C33 |65.42 (19)
N10—Pd1—N7—C27 [-75.95 (13) C37—N11—C33—C32 4.6 (3)
O1—Pd1—N7—C27  |-172.36 (13) C34—N11—C33—C32 |-168.28 (16)
Pd2—Pd1—N7—C27 |10.55 (12) C31—C32—C33—N11 |-44.4 (2)
N4—PdI—N7—C21  |-58.49 (12) C37—N11—C34—C35 |19.8(3)
N10—Pd1—N7—C21 [128.83 (12) C33—N11—C34—C35 |-167.19 (16)
O1—PdI—N7—C21  |32.42(12) N11—C34—C35—C36 |-52.0(2)
Pd2—Pd1—N7—C21 |-144.67 (12) C37—N12—C36—C35 [-26.8 (2)
N12—Pd2—N9—C27 [127.08 (12) Pd2—N12—C36—C35 |126.79 (14)
N6—Pd2—N9—C27  [-47.59 (12) C34—C35—C36—N12 |56.7 (2)
03—Pd2—N9—C27  |-135.71 (12) C36—N12—C37—NI10 [173.06 (15)
Pdl—Pd2—N9—C27 [39.98 (11) Pd2—N12—C37—N10 {20.1 (2)
N12—Pd2—N9—C26 |-96.54 (12) C36—N12—C37—NI1 [-8.9(2)
N6—Pd2—N9—C26  |88.78 (12) Pd2—NI12—C37—N11 |-161.88 (13)
03—Pd2—N9—C26  0.67 (12) C31—N10—C37—NI12 |-178.43 (15)
Pd1—Pd2—N9—C26 |176.36 (12) Pd1—N10—C37—N12 |-43.94(19)
N7—Pd1—N10—C37 [126.04 (12) C31—N10—C37—NI11 [3.6(2)
N1—Pd1—N10—C37 [-47.93 (12) Pd1—N10—C37—N11 |138.04 (14)
O1—Pd1—N10—C37 |-137.43 (12) C33—N11—C37—N12 [-159.55(17)
Pd2—Pd1—N10—C37 [39.52 (11) C34—N11—C37—NI12 [12.7(3)
N7—Pd1—N10—C31 |-99.18 (12) C33—N11—C37—N10 [18.4(3)
N1—Pd1—N10—C31 [86.86 (12) C34—N11—C37—N10 [-169.28 (17)
01—Pd1—N10—C31 |-2.65(12) Pdl—O1—C41—02  |-4.5(3)
Pd2—Pd1—N10—C31 |174.30 (12) Pdl—01—C41—C42  |175.05 (11)
N3—Pd2—N12—C37 [95.58 (13) 02—C41—C42—C43  |173.84 (18)
N9—Pd2—N12—C37 [-77.58 (13) 01—C41—C42—C43  |-5.8(3)
03—Pd2—N12—C37 |-174.90 (13) 02—C41—C42—C47  |-6.9 (3)
Pdl—Pd2—N12—C37 [9.08 (12) 01—C41—C42—C47  |173.44 (17)
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N3—Pd2—N12—C36 |-58.07 (12) C47—C42—C43—C44 1.3 (3)
N9—Pd2—N12—C36 |128.77 (12) C41—C42—C43—C44 |-179.51 (18)
03—Pd2—N12—C36 |31.45 (13) C42—C43—C44—C45 [-0.7(3)
Pdl—Pd2—N12—C36 |-144.57 (12) C43—C44—C45—C46 [-0.2(3)
C7—N1—C1—C2 429 (2) C44—C45—C46—C4T |0.6 (4)
Pdl—NI—Cl1—C2  |-125.05 (14) C45—C46—C47—C42 |-0.1 (3)
N1—C1—C2—C3 -60.5 (2) C43—C42—C47—C46 [-0.9 (3)
C7—N2—C3—C2 -13.4(3) C41—C42—C47—C46 [179.90 (19)
C4—N2—C3—C2 173.06 (17) Pd2—03—C51—04  [1.0(3)
C1—C2—C3—N2 46.0 (2) Pd2—03—C51—C52  |-178.55 (11)
C7—N2—C4—C5 7.6 3) 04—C51—C52—C53  [173.52 (17)
C3—N2—C4—C5 -178.90 (18) 03—C51—C52—C53  [-6.9 (2)
N2—C4—C5—C6 282 (2) 04—C51—C52—C57  |-8.3(3)
C7—N3—C6—C5 54.4(2) 03—C51—C52—C57  [171.35(16)
Pd2—N3—C6—C5  |-138.64 (13) C57—C52—C53—C54 (02 (3)
C4—C5—C6—N3 -57.1(2) C51—C52—C53—C54 [178.48 (17)
C1—N1—C7—N3 171.28 (16) C52—C53—C54—C55 [-0.7(3)
Pdl—N1—C7—N3  |-20.1(2) C53—C54—C55—C56 [0.6 (3)
C1—N1—C7—N2 8.2 (3) C54—C55—C56—C57 (0.0 (3)
Pdl—NI—C7—N2  |160.38 (13) C55—C56—C57—C52 |-0.4(3)
C6—N3—C7—N1 161.60 (16) C53—C52—C57—C56 0.3 (3)
Pd2—N3—C7—NI  |-5.6(2) C51—C52—C57—C56 |-177.97 (17)
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Figure S10. X-ray structure of 24

The x-ray structure of 24 with hydrogens and the atomic labeling scheme. The nonhydrogen

atoms are depicted with 50% probability ellipsoids.



