Web-based Supplementary Materials for "Additive Mixed Effect Model for Clustered Failure Time Data" by Jianwen Cai and Donglin Zeng

Web Appendix

<u>Technical conditions for Theorems 1 and 2</u> To establish the asymptotic distributions of $(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\theta}})$ and $\widehat{\Lambda}$, we need the following conditions, where any subscript 0 means the true values.

- (C.1) For any constant $\boldsymbol{\alpha}$ and a deterministic function $\mu(t)$ satisfying $\boldsymbol{\alpha} \neq 0$ or $\mu(t) \neq 0$, $P(\boldsymbol{\alpha}^T \mathbf{X}_{ij}(t) + \mu(t) = 0, j = 1, ..., n_i) < 1$.
- (C.2) The true parameter $H_0(t) = \Lambda_0(t) + G(t; \theta_0)$ is a right-continuous increasing function and satisfies $H_0(\tau) < \infty$ and $P(C_{ij} \ge \tau, \text{ for some } j = 1, ..., n_i) > 0$.
- (C.3) The true parameter θ_0 belongs to a known bounded set Θ . Moreover,

$$E\left\{\sum_{j\neq l,j,l=1}^{n_i} \int_0^{\tau} \int_0^{\tau} Y_{ij}(t) Y_{il}(s) \nabla_{\theta} Q(t,s;\theta) dt ds\right\}$$

is non-singular in a neighborhood of θ_0 , where $\nabla_{\theta}Q(t,s;\theta)$ denotes the derivative of $Q(t,s;\theta)$ with respect to θ .

(C.4) The cluster size, n_i , is bounded and independent of Y_{ij} , \mathbf{X}_{ij} and Δ_{ij} . Additionally, the censoring time is assumed to be independent of T_{ij} and ξ_i given \mathbf{X}_{ij} .

Conditions (C.1) and (C.2) imply that the matrix

 $n^{-1}\sum_{i=1}^{n}\sum_{j=1}^{n_{i}}\int_{0}^{\tau}Y_{ij}(t)\{\mathbf{X}_{ij}(t)-\overline{\mathbf{X}}(t)\}^{\otimes 2}dt$ is positive definite when n is large enough. Thus, $\widehat{\boldsymbol{\beta}}$ is well defined. This also implies that $\boldsymbol{\Sigma}$ is invertible. Otherwise, suppose $\boldsymbol{\alpha}^{T}\boldsymbol{\Sigma}\boldsymbol{\alpha}=0$ for some constant vector $\boldsymbol{\alpha}$. Then with probability one, $\boldsymbol{\alpha}^{T}\{\mathbf{X}_{ij}(t)-\mu(t)\}=0$ for any t and $j=1,...,n_{k}$. However, from condition (C.3) this implies $\boldsymbol{\alpha}=0$. Thus, $\boldsymbol{\Sigma}$ is positive definite. Additionally, condition (C.2) gives

 $n^{-1}\sum_{i=1}^{n}\sum_{j=1}^{n_i}Y_{ij}(t)$ is bounded away from zero. On the other hand, condition (C.3) ensures that the estimating equation for θ has a solution which is a consistent estimator for θ_0 .

Asymptotic expansion of $\widehat{\theta}$

To obtain the asymptotic distribution for $\widehat{\theta}$, we perform the first-order Taylor expansion at $\theta = \theta_0$ on the left-hand side of (7). It yields

$$\mathbf{P}_{n} \left[\sum_{j \neq l, j, l=1}^{n_{i}} \int_{0}^{\tau} \int_{0}^{\tau} Y_{ij}(t) Y_{il}(s) \left\{ d\widehat{\epsilon}_{ij}(t) d\widehat{\epsilon}_{il}(s) - Q(t, s; \theta_{0}) dt ds \right\} \right]$$

$$- \left[E \left\{ \int_{0}^{\tau} \int_{0}^{\tau} Y_{ij}(t) Y_{il}(s) \nabla_{\theta} Q(t, s; \theta_{0}) dt ds \right\} + o_{p}(1) \right] (\widehat{\theta} - \theta_{0}) = 0.$$

Note

$$\begin{aligned} &\mathbf{P}_{n}\left[\sum_{j\neq l,j,l=1}^{n_{i}}\int_{0}^{\tau}\int_{0}^{\tau}Y_{ij}(t)Y_{il}(s)\left\{d\widehat{\epsilon}_{ij}(t)d\widehat{\epsilon}_{il}(s)-Q(t,s;\theta_{0})dtds\right\}\right]\\ &=\left(\mathbf{P}_{n}-\mathbf{P}\right)\left[\sum_{j\neq l,j,l=1}^{n_{i}}\int_{0}^{\tau}\int_{0}^{\tau}Y_{ij}(t)Y_{il}(s)\left\{d\epsilon_{ij0}(t)d\epsilon_{il0}(s)-Q(t,s;\theta_{0})dtds\right\}\right]\\ &-E\left[\sum_{j\neq l,j,l=1}^{n_{i}}\int_{0}^{\tau}\int_{0}^{\tau}Y_{ij}(t)Y_{il}(s)\left\{d\widehat{H}(t)-dH_{0}(t)+\mathbf{X}_{ij}(t)^{T}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0})dt\right\}d\epsilon_{il0}(s)\right]\\ &-E\left[\sum_{j\neq l,j,l=1}^{n_{i}}\int_{0}^{\tau}\int_{0}^{\tau}Y_{ij}(t)Y_{il}(s)d\epsilon_{ij0}(t)\left\{d\widehat{H}(s)-dH_{0}(s)+\mathbf{X}_{il}(t)^{T}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0})ds\right\}\right].\end{aligned}$$

Thus, from equations (A.1) and (A.2), we obtain

$$\widehat{\theta} - \theta_0 = (\mathbf{P}_n - \mathbf{P})S_{\theta}(\mathbf{O}_i) + o_n(n^{-1/2})$$

where

$$S_{\theta}(\mathbf{O}_{i}) = \left[E \left\{ \sum_{j \neq l, j, l=1}^{n_{i}} \int_{0}^{\tau} \int_{0}^{\tau} Y_{ij}(t) Y_{il}(s) \nabla_{\theta} Q(t, s; \theta_{0}) dt ds \right\} \right]^{-1}$$

$$\times \left\{ \sum_{j \neq l, j, l=1}^{n_{i}} \int_{0}^{\tau} \int_{0}^{\tau} Y_{ij}(t) Y_{il}(s) \left\{ d\epsilon_{ij0}(t) d\epsilon_{il0}(s) - Q(t, s; \theta_{0}) dt ds \right\} \right.$$

$$- E \left[\sum_{j \neq l, j, l=1}^{n_{i}} \int_{0}^{\tau} \int_{0}^{\tau} Y_{ij}(t) Y_{il}(s) \left\{ dS_{H}(\mathbf{O}_{i}; t) + \mathbf{X}_{ij}(t)^{T} S_{\boldsymbol{\beta}}(\mathbf{O}_{i}) dt \right\} d\epsilon_{il0}(s) \right]$$

$$- E \left[\sum_{i \neq l, j, l=1}^{n_{i}} \int_{0}^{\tau} \int_{0}^{\tau} Y_{ij}(t) Y_{il}(s) d\epsilon_{ij0}(t) \left\{ dS_{H}(\mathbf{O}_{i}; s) + \mathbf{X}_{il}(t)^{T} S_{\boldsymbol{\beta}}(\mathbf{O}_{i}) ds \right\} \right] \right\}.$$

Consistent estimation of asymptotic variance. Clearly, the asymptotic covariance of $(\widehat{\boldsymbol{\beta}}, \widehat{H}, \widehat{\boldsymbol{\theta}})$ is given by the covariance of the corresponding influence function $(\mathbf{S}_{\boldsymbol{\beta}}, S_H, S_{\boldsymbol{\theta}})$. Thus, a consistent estimator of the asymptotic covariance can be obtained from the empirical covariance of $(\widehat{\mathbf{S}}_{\boldsymbol{\beta}}, \widehat{S}_H, \widehat{S}_{\boldsymbol{\theta}})$, where the latter are the consistent estimators of $(\mathbf{S}_{\boldsymbol{\beta}}, S_H, S_{\boldsymbol{\theta}})$. Particularly, we can choose

$$\widehat{S}_{\boldsymbol{\beta}}(\mathbf{O}_{i}) = \left[n^{-1} \sum_{i=1}^{n} \sum_{j=1}^{n_{i}} \int_{0}^{\tau} Y_{ij}(t) \{ \mathbf{X}_{ij}(t) - \overline{\mathbf{X}}(t) \}^{\otimes 2} dt \right]^{-1} \sum_{j=1}^{n_{i}} \int_{0}^{\tau} Y_{ij}(t) \{ \mathbf{X}_{ij}(t) - \overline{\mathbf{X}}(t) \} d\widehat{\epsilon}_{ij}(t),$$

$$\widehat{S}_{H}(\mathbf{O}_{i}; s) = \int_{0}^{s} \frac{\sum_{j=1}^{n_{i}} Y_{ij}(t) d\widehat{\epsilon}_{ij}(t)}{n^{-1} \sum_{i=1}^{n} \sum_{j=1}^{n_{i}} Y_{ij}(t)} - \int_{0}^{s} \overline{\mathbf{X}}(t)^{T} dt \widehat{S}_{\boldsymbol{\beta}}(\mathbf{O}_{i}),$$

and

$$\widehat{S}_{\theta}(\mathbf{O}_{i}) = \left\{ n^{-1} \sum_{i=1}^{n} \sum_{j \neq l, j, l=1}^{n_{i}} \int_{0}^{\tau} \int_{0}^{\tau} Y_{ij}(t) Y_{il}(s) \nabla_{\theta} Q(t, s; \widehat{\theta}) dt ds \right\}^{-1} \\
\times \left\{ \sum_{j \neq l, j, l=1}^{n_{i}} \int_{0}^{\tau} \int_{0}^{\tau} Y_{ij}(t) Y_{il}(s) \left\{ d\widehat{\epsilon}_{ij}(t) d\widehat{\epsilon}_{il}(s) - Q(t, s; \widehat{\theta}) dt ds \right\} \right. \\
\left. - n^{-1} \sum_{k=1}^{n} \left[\sum_{j \neq l, j, l=1}^{n_{k}} \int_{0}^{\tau} \int_{0}^{\tau} Y_{kj}(t) Y_{kl}(s) \left\{ d\widehat{S}_{H}(\mathbf{O}_{i}; t) + \mathbf{X}_{kj}(t)^{T} \widehat{S}_{\boldsymbol{\beta}}(\mathbf{O}_{i}) dt \right\} d\widehat{\epsilon}_{kl}(s) \right] \\
\left. - n^{-1} \sum_{k=1}^{n} \left[\sum_{j \neq l, j, l=1}^{n_{k}} \int_{0}^{\tau} \int_{0}^{\tau} Y_{kj}(t) Y_{kl}(s) d\widehat{\epsilon}_{kj}(t) \left\{ d\widehat{S}_{H}(\mathbf{O}_{i}; s) + \mathbf{X}_{kl}(t)^{T} \widehat{S}_{\boldsymbol{\beta}}(\mathbf{O}_{i}) ds \right\} \right] \right\}.$$