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Web Appendix

Technical conditions for Theorems 1 and 2 To establish the asymptotic distributions

~

of (ﬁ, 6) and /AX, we need the following conditions, where any subscript 0 means the
true values.

(C.1) For any constant « and a deterministic function p(t) satisfying e # 0 or
p(t) #0, P(a™X;(t) +ut)=0,7=1,...,n;) < 1.

(C.2) The true parameter Hy(t) = Ao(t) + G(t;6y) is a right-continuous increasing
function and satisfies Hy(7) < oo and P(C;; > 7, for some j = 1,...,n;) > 0.

(C.3) The true parameter 6, belongs to a known bounded set ©. Moreover,

{#%; 1/ / i) Ya(s)VoQ(t, s; e)dtds}

is non-singular in a neighborhood of 6y, where VyQ(t, s;6) denotes the derivative of
Q(t, s;0) with respect to 0.
(C.4) The cluster size, n;, is bounded and independent of Y;;, X;; and A;;. Addition-

ally, the censoring time is assumed to be independent of 7;; and &; given Xj;.

Conditions (C.1) and (C.2) imply that the matrix
Tt Y [ Y (X () - X (t)}®2dt is positive definite when n is large enough.
Thus, ﬁ is well defined. This also implies that ¥ is invertible. Otherwise, suppose
a’ a = 0 for some constant vector a. Then with probability one, a®{X;;(t) —
u(t)} = 0 for any ¢t and j = 1,...,n,. However, from condition (C.3) this im-

plies @ = 0. Thus, X is positive definite. Additionally, condition (C.2) gives



n~t YL, D00 Yii(t) is bounded away from zero. On the other hand, condition (C.3)
ensures that the estimating equation for € has a solution which is a consistent esti-

mator for 6.

Asymptotic expansion of )

To obtain the asymptotic distribution for 5, we perform the first-order Taylor

expansion at § = 6y on the left-hand side of (7). It yields

Lem 1/ / il s) {de;;(t)dea(s )_Q(ta3§90>dtds}]
{ {/ / () Yu(s)VeQ(t, s; Go)dtds} + op(l)} (6—60) = 0
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Thus, from equations (A.1) and (A.2), we obtain

0 — by = (P, — P)Sp(0;) + 0,(n"/?),

—1
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Consistent estimation of asymptotic variance. Clearly, the asymptotic covariance of

(,@, H , :9\) is given by the covariance of the corresponding influence function (S B S, Sp).
Thus, a consistent estimator of the asymptotic covariance can be obtained from the
empirical covariance of (§ B S s §9), where the latter are the consistent estimators of

(Sﬁ’ S, Sp). Particularly, we can choose

S3(0,) = *ZZ / i (D X5 (t) }®2dt] Z (X)X (t) }dey (1),
Su(0;;s) = s ?]21 1”2 - (j / X(t) TdtSﬁ ),

and

50(0;) = { Ay Y i VQ(tsQ)dtds}_
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