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Supplementary Methods and Analysis 

Monte Carlo sampling 

Monte Carlo Sampling was used to generate a set of uniform, feasible flux distributions 

(points).  The method is based on the Artificially Centered Hit and Run (ACHR) algorithm with 

slight modifications 1. Initially a set of non-uniform pseudo-random points, called warm-up 

points, is generated. In a series of iterations, each point is randomly moved, always 

remaining within the feasible flux space. This is done by 1) choosing a random direction, 2) 

computing the limits of how far one can travel in that direction and 3) choosing a new point 

randomly along this line. After numerous iterations, the set of points is mixed and 

approaches a uniform sample of the solution space. 

Warm-up points are generated by Linear Programming (LP). For each point, the objective 

coefficients are set to a random vector with values in [-1,1]. This generates a point at 

random corners in the solution space.  

The direction of movement is chosen as described in 2.  The center point of all points is 

computed and the direction is the difference of a randomly selected point and the center 

point. This has the effect of biasing the directions in the longer directions of the solution 

space and speeds up the rate of mixing while maintaining sample uniformity. 

One of the problems with the ACHR is that the termination condition is not clearly defined.  

Here we introduce the concept of the mixed fraction as a measure of the number of 

iterations required for proper mixing.  A partition is created over the set of points by 

drawing a line at the median value with half the points on either side of the line.  The mixed 

fraction is a count of how many points cross this line between the beginning of sampling and 

the end as a fraction of the total number of points.  Initially the mixed fraction is 1 as all 

points are on the same side of the partition.  When perfect mixing is achieved, each point 



has a 50% chance of crossing the partition line so the mixed fraction will be close to 0.5.  This 

value is approached asymptotically and a threshold of 0.51 was used for sampling. 

Additional effects to metabolic capacity and neurotransmission 

with various AD-associated enzyme deficiencies 

A few central metabolic enzymes demonstrate altered expression or activity in AD, such as 

pyruvate dehydrogenase (PDHm), α-ketoglutarate dehydrogenase (AKGDm), and 

cytochrome c oxidase (CYOO) 3, 4. While α-ketoglutarate dehydrogenase was discussed more 

heavily in this work, due to its 57% decrease in activity in post mortem brain, pyruvate 

dehydrogenase and cytochrome c oxidase also show decreased activity that leads to 

suppressed metabolic network activity.  

 

To test the additional two enzymes, the models were provided cerebral metabolic rates as 

reported for healthy elderly patients 5, 6, in an effort to measure the change from normal 

brain metabolism to the more constrained metabolism in Alzheimer’s disease. In our 

models, pyruvate dehydrogenase flux was reduced by 41% from its normal flux, as reported 

in 4, and cytochrome c oxidase was reduced by 30% from its normal flux (no enzymatic 

assays have reported the actual level of decreased flux in Alzheimer’s disease in human). In 

silico, the decreased activity of these enzymes shows metabolic capacity impairments in 

neurons. That is, the rate of CO2 efflux decreases significantly when cytochrome c oxidase or 

pyruvate dehydrogenase is inhibited (Supplementary Figures 1.a-b). Moreover, deficiencies 

in PDHm activity leads to a decrease in allowable cholinergic neurotransmission capacity (p = 

0.032; Supplementary Figure 1.c).  

 

Similar tests were done on the Çakιr 7 model and the entire human reconstruction (HR1). 

The Çakιr model is unable to withstand the 41% PDHm knock-down. However, a 10% 

decrease in PDHm surprisingly reduces cholinergic neuron neurotransmission capacity by 

89%, while it reduces the median rate of CO2 efflux by less than 1%. When PDHm is knocked 

down in the HR1 model, the median rate of CO2 efflux also does not decrease. However, the 

comparison of cholinergic neurotransmission rate in the HR1 model is not feasible because 

choline acetyltransferase participates in a type 3 extreme pathway, or “loop” 8, in the model. 

When cytochrome c oxidase is suppressed, it only shows a 1% decrease in the rate of CO2 

efflux in the Çakιr model, and no significant decrease in the HR1 model. 



 
Supplementary Figure 1. Pyruvate dehydrogenase and cytochrome c oxidase deficiencies 

in AD effect neuronal functions. As seen in α-ketoglutarate dehydrogenase deficiencies, 

there are decreased feasible metabolic rates for brain with inhibition of (a) cytochrome c 

oxidase and (b) pyruvate dehydrogenase. In addition, (c) inhibition of pyruvate 

dehydrogenase significantly decreases the allowable acetylcholine production rate. 

Cytochrome c oxidase inhibition shown here was done in the glutamatergic neuron model, 

and pyruvate dehydrogenase inhibition was done in the cholinergic neuron model.  

However, results were the same irrespective of the model choice. 

 

A comparison of GAD and other neuron specific genes in control 

and AD patients 

As demonstrated in Figure 3 in the main text, the use of our model aided in the prediction 

that GAD can play a neuroprotective role in specific neuron populations in Alzheimer’s 



disease. In addition, our model provided the mechanism by which it plays this role. Further 

analysis is shown here to further support our model-derived hypothesis.  

A comparison of the regional expression levels correlates better with Alzheimer’s disease 

pathology than other neuron-specific genes. To test this, all other known neuron-specific 

genes were subjected to the same analysis as for GAD. Specifically, the distribution of each 

neuron-specific gene across six brain regions was assessed to see if the expression follows 

the same pattern as seen in Alzheimer’s disease. Each neuron-specific gene was normalized 

against the three remaining neuron-specific genes (similar to GAD normalization described 

in the methods section). As seen in Supplementary Figure 2.b-e, no other neuron-specific 

genes tested here demonstrated an expression pattern consistent with the pattern of 

damage susceptibility. However, in control brain, GAD shows higher expression per neuron 

in brain regions that are relatively unaffected in AD, and lower expression in affected regions 

(Supplementary Figure 2.a). In addition, it is expected that any genes providing a 

neuroprotective role, or that increase neuron susceptibility, would either show an increase 

or decrease, respectively, in expression per neuron in AD patients. However, none of these 

neuron specific genes show such this trend (Supplementary Figure 2.b-e), except for GAD 

(Supplementary Figure 2.a). 



 

Supplementary Figure 2. Other neuron-specific genes do not show regional specificity in 

expression consistent with AD pathology. GAD expression shows a regional specificity 

consistent with Alzheimer’s disease pathology. (a) Specifically, regions with severe damage 

show the lowest expression levels in control brain, while relatively unaffected regions show 

higher expression. Moreover, in AD, regions that are the most severely affected show an 

increase in the amount of GAD per neuron, while unaffected regions do not, suggesting that 

GAD may play a neuroprotective role as predicted by the model. The four other neuron-

specific genes, i.e., (b) TUBB3, (c) NeuN, (d) SYN1, and (e) ACTL6B, were all assessed in a 

similar manner and none of them demonstrated a similar pattern, thereby providing 

additional support for the role of GAD. 

DLX genes also correlate with AD pathology 

The DLX genes are a class of genes that are highly expressed in the developing brain, and the 

DLX1, DLX2, DLX5 and DLX6 isoforms are known to be expressed in primarily in GABAergic 

neurons. Interestingly, these genes also show a similar (although weaker) expression pattern 

as seen with GAD (Supplementary Figure 3). This, however, is not surprising since it has been 

shown the DLX2 and DLX5 isoforms induce GAD expression in the brain while DLX1 aids in 

the differentiation into GABAergic neurons 9, 10. Consistent with this, DLX2 and DLX5 show 

the greatest increase of expression in the brain regions that show the most damage in AD, 

thereby providing additional support that GAD may be playing a neuroprotective role.  



 

Supplementary Figure 3. The DLX genes show an expression pattern similar to that of GAD. 

The DLX genes were tested to provide additional support to the model predictions of GAD 

being neuroprotective. These genes, which are found to be expressed in GABAergic neurons, 

show a similar regional expression pattern as GAD, although weaker, in control brain (a) and 

an increased expression level per neuron in AD (b). The stronger results for DLX2 and DLX5 

are especially supportive of GAD’s contribution as these are known to induce GAD 

expression. 

GAD expression patterns are robust against neuron marker 

choice 

None of the neuron marker genes chosen for the analysis in this study have been known to 

be differentially expressed non-histopathologically affected neurons in Alzheimer’s disease. 

The only exception is TUBB3, which has only been suggested to be down-regulated in one 

study which used the same set of microarrays as used here 11. However, the usage of four 

neuron markers representing different parts of the cell attempts to buffer against unknown 

changes of individual neuron markers, under the assumption that on average these markers 

will not change in histopathologically normal cells.  

To test the robustness of our results to different combinations of neuron markers, we 

systematically removed each marker and recomputed the GAD results presented in Figure 

3.g-h. As seen in Supplementary Figure 4, the choice of neuron markers does not 

significantly affect the expression changes seen in GAD. 



 

Supplementary Figure 4. Neuron marker choice has little effect on regional profile of GAD 

expression. To test the robustness of the regional profile of GAD expression, each neuron 

marker used for normalization was removed and the regional profile of GAD expression was 

assessed. When compared against the profile in which all four neuron markers were used for 

normalization (a), the results were robust following the removal of (b) TUBB3, (c) NeuN, (d) 

SYN1, and (e) ACTL6B, thereby demonstrating the robustness of these results. 

Comparison with previous models of brain energy metabolism 

General Properties of our models 

The reconstruction process detailed in the main text yielded three models containing 1066, 

1067, and 1070 compartment-specific enzymatic, transport, and exchange reactions 

involving 983, 983, and 987 metabolites/compartment combinations, for the glutamatergic, 

GABAergic, and cholinergic neuron/astrocyte models, respectively. These models accounted 

for many metabolic processes such as energy metabolism, heme synthesis, quinine 

biosynthesis, mtDNA turnover, neurotransmitter synthesis and degradation, and biotin 

metabolism. Complete lists of reactions with the corresponding gene-protein-reaction 

associations, and citations supporting reaction details are provided in Supplementary Tables 

1-4. Additional parameters used to constrain the models are listed in Supplementary Table 

5. 

Comparison of pathway inclusion between the previous models and 

our work 

This is not the first time a constraint-based model of brain energy metabolism has been 

published. Three other manually reconstructed models have been constructed previously 7, 

12, 13. All three contained multiple compartments representing the extracellular space, 

astrocytes, and neurons. The first of these, the Chatziioannou model, contains 19 reactions 

with 19 unique metabolite/compartment pairs, and was used to investigate situations in 

which the glutamate-glutamine cycle was inactive 12. The second, the Occhipinti model, 

contains 109 enzymatic and transport reactions, and was used to study the relative pathway 

activities under different neural activities 13. The third, the Çakιr model, contains 251 



reactions/exchanges and 216 metabolites, and was used to investigate the metabolic effects 

of hypoxic states 7. Herein we report the first bottom-up reconstruction of a 

neuron/astrocyte unit in which 1) high-throughput data were used to aid in its construction, 

2) associated genes and protein were assigned to reactions, and 3) all reactions were mass 

and charge balanced. 

A brief comparison of each model demonstrates a gradual increase in model scope (see 

Supplementary Table 8). The Chatziioannou model 12 is a small model encompassing the 

basic metabolic processes in astrocyte and neuron metabolism in rat. It covers glucose 

uptake, glycolysis, TCA cycle, the malate-aspartate shuttle, the glutamate-glutamine cycle, 

etc. Many of the metabolic pathways are compressed into single reactions in this model. The 

model published by Occhipinti, et al. 13, is of slightly larger scope, including the pathways in 

the Chatziioannou model, plus oxidative phosphorylation, ketone body metabolism, GABA 

metabolism, and the phosphocreatine cycle. In this model, many of the metabolic reactions 

are still lumped into net reactions across several enzymes. The Çakιr model 7 covered a much 

broader range of pathways, especially among amino acid and lipid metabolic pathways. Our 

models extend the scope of these previous studies. In addition, we have separated lumped 

reactions, added many additional pathways involving co-factor metabolism (e.g., heme, 

vitamin D, ubuiquinone, folate, etc.) and the metabolism of a few other carbon sources not 

included in the other studies. Moreover, we associated genes with each reaction as far as 

the literature and data allowed (403 genes in total). 

Gap-filling in the models of brain energy metabolism 

A common property of large-scale metabolic network models is the presence of numerous 

gaps in the network (see 14 for a review). Gaps can result from various situations. For 

example, knowledge gaps occur when portions of pathways have not been studied. Scope 

gaps, on the other hand occur when a metabolite produced in a reaction should 

subsequently be used in another system in the cell, outside of the scope of the model. For 

example, in the iAF1260 model of E. coli metabolism 15, there are reactions for charging 

tRNAs. However, translation is currently not addressed in the model, and so there is a scope 

gap in which the charged tRNAs cannot be used and therefore, the charging reactions 

cannot carry flux. A review of gap-filling techniques is beyond the scope of this work. 

However, several reviews and studies have addressed this issue 14, 16-18. 

Some gaps are obvious, in which a metabolite in the network can only be produced or 

consumed. More difficult to address are blocked reactions, which cannot carry a flux 

because of knowledge  gaps, scope gaps, stoichiometric imbalances or the funneling of 

metabolites into metabolite pools for storage (e.g., lipids in adipocytes). In this work, gaps 

were addressed as follows. First, all model exchange reactions were opened, allowing the 

uptake and secretion of all metabolites known to cross the blood brain barrier. Second, flux 

variability analysis was employed to identify all reactions that cannot carry flux. Reactions 

from this list were manually inspected. Literature was then used to fill in gaps by either 

adding reactions that were missing from the models or removing reactions that were not 

supported by the literature. For example, heme biosynthesis was non-functional in the first 

draft of the mitochondrial model. However, following a thorough literature search, a few 



reactions that were outside of the scope of the model were identified and added to 

complete pathway. This process was continued until most blocked reactions were located in 

the peripheral regions of the model. Much care was taken to minimize gaps in regions of the 

models that can affect the novel results presented in this work. 

In the end, the fraction of model reactions that were blocked was assessed and compared to 

other manually curated genome-scale models of eukaryotic metabolism. For this we used 

the human reconstruction (HR1) and the most recent reconstruction of yeast metabolism, 

iMM904 19. For each model, all metabolite exchanges were opened, allowing the model to 

uptake and secrete all exchange metabolites. Flux variability analysis was then employed to 

identify all reactions that cannot carry flux. The percentages of total model reactions that 

cannot carry flux are shown in Supplementary Figure 5. In this analysis, we found that 

roughly 34% and 35% of human and yeast reactions were blocked, respectively. The models 

built in this study, on the other hand had a lower percentage between 25-26%. While these 

percentages seem high, these models each contain knowledge gaps that are expected to be 

resolved in future experimental studies, and thereby will be reflected in future versions of 

these models. This process has been successful for the iAF1260 model of E. coli metabolism 

which now contains fewer than 10% blocked reactions, and many of these blocked reactions 

are due to scope gaps that will be addressed as the metabolic network is coupled to the 

transcription and translation machinery 20.  

This process of iteratively updating and filling gaps is similar to the process of sequencing 

genomes, which when first published, usually are not completely sequenced or assembled. 

Moreover, most genomes have a large number of hypothetical proteins and uncharacterized 

open reading frames (ORFs). Genomes are subsequently updated over time as the 

percentage of sequence is increased until completed and the annotation of ORFs and 

genomic features is continuously updated. 



 

Supplementary Figure 5. Blocked reactions in large-scale metabolic networks. A common 

property of metabolic network reconstructions is the existence of network gaps. These gaps 

lead to a certain number of reactions that cannot carry flux, even when all exchange fluxes 

are opened. An aim of the gap-filling process is to minimize the number of blocked 

reactions. However, limitations in knowledge of metabolism in the given organism and 

limitations from the model scope lead to a significant portion of model reactions to be 

blocked. For example, in the human metabolic network (HR1) and the recent yeast 

metabolic network (iMM904), roughly 35% of reactions are blocked, while the models built 

for this study have 25-26% of the total reactions, transports and/or exchanges blocked. 

Previously reported ATP yields are within model predictions 

ATP production and consumption in the human brain can be estimated in several ways 

(reviewed in 21). Clark and Sokoloff 22 derive the ATP consumption rate using the 

assumptions that the 1400g human brain takes up 49ml of O2/min (1.6 µmol/g wet 

brain/min), that all of the O2 is used for oxidation of carbohydrates, and that the synthesis of 

phosphate bonds in ATP has an energy conversion efficiency of ~20%. This leads to an ATP 

consumption rate of 5.1 µmol ATP/g wet brain / min. 

Alternatively, since NADH reoxidation in the brain depends mostly on glucose and oxygen, it 

is assumed that about 2.5 ATP will be produced from each O atom consumed (termed the 

P/O ratio).  Once again we assume a cerebral metabolic rate of O2 of 49ml/min. We must 

also take into account that about 10% of the oxygen uptake is involved in non-mitochondrial 

processes and a 20% loss of ATP production potential, due to proton leak (estimated from 

muscle, heart, and liver 23). Thus the net rate of ATP consumption is 5.5 µmol ATP/g wet 

brain / min (see 21 for details).  

Here we used the human cerebral metabolic rates for metabolites reported in 5, 6 to 

compute all feasible net steady state ATP production rates (equivalent to consumption rates 

at steady state). This was done as follows. First, the models were set up using the cerebral 

metabolic rates (CMRs) reported by Lying-Tunell, et al. 5, 6, with the reported glucose and O2 

CMRs reported by Clark and Sokoloff 22 (used to allow comparison against the reported ATP 

production rates, which were based on the Clark and Sokoloff values). Second, Monte Carlo 

Sampling was used to uniformly sample all candidate flux states for the three models 

presented here, along with the Çakιr and HR1 models. To avoid the inclusion of 

thermodynamically-infeasible loops, a mixed integer linear programming method (ll-

sampling) was used to find the nearest loopless flux for each sample point (Schellenberger, 

et al., submitted). The removal of loops was critical to the remaining steps to avoid the 



summation of unrealistic production of ATP in these loops. Third, the fluxes of all ATP 

producing/consuming reactions were normalized by the stoichiometry of ATP in the 

reaction. Fourth, for each sample point, the sum of all normalized ATP consuming fluxes was 

subtracted from the sum of all ATP producing fluxes, thereby providing the ATP production 

rates for each sample point. Lastly, all ATP production rates were multiplied by 0.7 to take 

into account the 30% loss of ATP production potential from non-mitochondrial usage and 

proton leak. This resulted in median ATP production rates of 5.7, 5.6, and 5.7 µmol ATP/g 

wet brain / min for the cholinergic, GABAergic, and glutamatergic models, respectively. 

These results are within 6-8%, of the published values. While technical issues from the size 

of HR1 did not allow us to compute its ATP production rate, the Cakir model was tested and 

returned median ATP production rate of 5.4 µmol ATP/g wet brain / min, which is within 3% 

of the mean reported value. Thus, our models and the Cakir model were well within the 

estimated error of the previously reported values, in which it was stated that the true value 

could be within 25% of the previously reported values 21.  

Models allow for experimentally measured fluxes 

In constraint-based modeling, one can constrain the space of feasible metabolic flux 

distributions by either constraining internal reactions or input/output rates. In this work we 

used experimentally measured uptake and secretion rates to help constrain the models, also 

known as cerebral metabolic rates. One challenge in doing this is that it is possible to over-

constrain the metabolic network, thereby leading to infeasible solutions because of 

conflicting metabolite uptake and secretion rates. For example, if one measurement said 

that between 4-5 units of glucose entered the brain in for a given time frame, and that 36-37 

units of CO2 were released, no feasible steady-state solution could be attained since it would 

require more carbon leaving the brain than would be entering. From the datasets used in 

this work 5, 6, uptake and secretion ranges for metabolites that are used within the scope of 

the models did not over-constrain the model, and therefore feasible solutions were 

attainable. 

 

Predicted internal fluxes are dependent on the uptake and secretion constraints placed on 

the models. However, it is often difficult to experimentally validate internal fluxes. Many 

fluxomic studies are able to infer pathway and branch-point fluxes, but can only occasionally 

infer the flux through a specific enzyme in vivo. From the literature, we have identified three 

enzymes for which reliable in vivo fluxes have been determined in the human brain 24-26. Flux 

Variability Analysis was used to determine the upper and lower bounds for each of these 

fluxes in our models, the Çakιr model, and the HR1 model, subject to the experimentally-

measured cerebral metabolic rates used for all analyses in this study 5, 6. All experimentally-

measured fluxes reside within the solution space of these five models (Supplementary Figure 

6). 

 



 
Supplementary Figure 6. Computed candidate flux states are consistent with 

experimentally measured fluxes. Fluxomic experiments have successfully measured several 

metabolic fluxes in the human brain. A small number of these fluxes were attributable to a 

specific enzyme in either the neuronal or astrocytic compartments (i.e., neuronal pyruvate 

dehydrogenase, astrocytic pyruvate carboxylase, and astrocytic glutamine synthetase). 

These reported fluxes were normalized by the reported glucose cerebral metabolic rates 

(CMR) so that the CMR would be consistent with the rates used in our models. The rates 

were then compared to the ranges of feasible metabolic fluxes in our models, the Çakιr 

model and the HR1 model, with the upper and lower bounds for each model denoted by the 

round ends. All fluxes were scaled by the maximum feasible flux for the respective enzyme 

for each model to allow for improved visualization. All experimentally-measured fluxes 

reside within the solution spaces of the five models. 

Model predicts that GABAergic neurons are the primary users of 

the GABA shunt 

Most, if not all neurons, have enzymes that contribute to a bypass in the TCA cycle called the 

GABA shunt; however, it has been reported to be predominant in GABAergic cells 27. This 

shunt routes flux from α-ketoglutarate to succinate. In vitro estimates suggest that this 

pathway may normally account for between 1/10 and 1/3 of the brain TCA cycle flux 27, 28. In 

mouse GABAergic neurons, the flux through the GABA shunt is about the same as flux 

through AKGDm 27, suggesting that a majority of GABA shunt activity is found in GABAergic 

cells. In our simulations, GABAergic neurons are consistent with these results, showing a 

slightly lower feasible flux range for the GABA shunt than seen for AKGDm, while cholinergic 



and glutamatergic neurons show a very small flux through the GABA shunt enzymes (see 

Supplementary Figure 7).  

 

The small flux in cholinergic and glutamatergic neurons is due to the degradation of 

neurotransmitter that is available from outside of the neurons. In vivo, there is also a small 

amount available as non-GABAergic neurons break down GABA released from GABAergic 

neurons. Thus our simulations suggest that a distinction should be made in the naming of 

the GABA shunt in the different neuron types, since the GABA shunt is not a true shunt in 

non-glutamate decarboxylase-expressing neurons. In these neurons the other GABA shunt 

enzymes primarily plays a role of a degradation pathway with no replenishment within the 

same cell.  

 

When this analysis is done on other models, the Çakιr model shows that the brain has the 

same flux range for the two pathways, while the HR1 model GABA shunt flux is less than 2% 

of the TCA cycle flux. Both of these are outside of the 1/10-1/3 ratio of GABA shunt to TCA 

cycle flux reported previously, primarily because neither model was designed to encapsulate 

neuron-type specific responses. 

 



 
Supplementary Figure 7. In silico GABA shunt usage in different neuron types is consistent 

with the reported in vivo usage. While most neurons have active GABA shunt enzymes, the 

level of shunt activity is neuron-type specific. In silico, glutamatergic and cholinergic neurons 

carry a flux through GABA shunt enzymes. However, the activity of the shunt negligible, i.e., 

orders of magnitude lower than the flux through the TCA cycle. However, the distribution of 

feasible flux states for the GABA shunt in GABAergic neurons is similar to the flux through 

the TCA cycle. The Çakιr model and entire HR1 model are also shown for comparison. Box 

plots show the distributions of 5000 samples.  

Altered correlation between reactions in different neuron types 

can be used to systematically identify underlying mechanisms of 

neuron-type specific effects 

In these models, the flux through each reaction can have complete, strong, moderate, or no 

dependency on the flux through other reactions in the model 29. These can also be described 

as “reaction correlations” in which a Pearson’s correlation coefficient is computed for the 

flux values for two reactions, using all sampled feasible flux states. For each model, reaction 

correlation coefficients were computed for all possible reaction pairs and compared 

between the three neuron types. Differences in the model topologies lead to significant 

changes in a small subset of reaction pair dependencies, as seen by the off-diagonal points in 

Supplementary Figures 8.a-c. Many of these are of little interest, since many belong to 

pathways that process the different neurotransmitters. However, a small number are of 

great interest, showing unexpected differences between neuron types. One of particular 

interest is the reaction correlation between neuronal α-ketoglutarate dehydrogenase and 



oxidative phosphorylation. In glutamatergic and cholinergic neurons, these reactions are 

tightly coupled. However, in GABAergic neurons, these reactions are decoupled 

(Supplementary Figure 8.d), providing additional support that the metabolic network 

topology should lead to cell-type specific responses in Alzheimer’s disease or thiamine 

deficiencies, which affect α -ketoglutarate dehydrogenase 30. The correlation coefficient for 

the Çakιr and HR1 models, also demonstrated a correlation near zero, demonstrating that 

the analysis of cell-type specific networks can provide addition insight that cannot be 

attained using more coarse-grained models.  

 

Supplementary Figure 8. Cell-type-specific co-dependencies can be queried to identify cell-

type-specific responses under cellular perturbation. The correlation between reaction 

fluxes within reaction pairs is computed, and repeated for each model. It is expected that if 

two models are similar as in the cases of the different neuron-type models, most reaction 

pairs will have similar reaction pair correlation coefficients (i.e., will lay near the bold red 

diagonal in (a)-(c)). However, reactions that are distant from the diagonal demonstrate 

inherent differences between the cell types. When this is computed for the three neuron 

models, only a small fraction of conserved reaction pairs have significantly different 

reaction-pair-correlations (a)-(c). For example, (d) the bootstrapped correlation between 

neuronal α-ketoglutarate dehydrogenase and cytochrome c oxidase is near zero in 

GABAergic neurons, but ~0.75 for glutamatergic and cholinergic neurons, demonstrating the 

susceptibility of these neuron types to alterations in α-ketoglutarate dehydrogenase activity.  

 



An assessment of correlated reaction fluxes computed using 

Monte Carlo sampling and other methods  

The method presented above can be successfully employed to predict target reactions, for 

which perturbations may lead to cell-type-specific effects. However, the question remains 

about how it performs compared to other published methods such as the Flux Coupling 

Finder 31 and Hard-Coupled Reaction sets 32. 

In this study, we utilized Monte Carlo random sampling to determine potential flux states in 

the solution space. By comparing the individual fluxes against one another, we were able to 

calculate the correlation coefficients. Highly correlated reactions were deemed to be 

coupled. In addition, reaction pairs with a correlation coefficient of 1 or -1 were deemed 

perfectly correlated. 

Other approaches to determine coupled fluxes include the Hard-Coupled Reaction (HCR) 

sets 32 and Flux Coupling Finder (FCF) 31 methods. The HCR method involves looking only at 

the stoichiometry of the network. The method is unbiased since flux constraints are ignored 

and only perfectly correlated reactions are calculated. On the other hand, FCF iteratively 

fixes a flux in the network and calculates the accompanying changes through optimization of 

the other fluxes. If a flux is then fixed or changed, the pair is deemed fully or partially 

coupled, respectively. However, the model has to be first converted into an irreversible 

model, thereby increasing the size of the network. Here, we compared the three methods 

for the glutamatergic neuron model, though results are qualitatively similar for any of the 

three models presented in this work.  

HCR sets were calculated for the glutamatergic neuron model (Supplementary Table 12). 

When comparing the HCR method with the other methods, we removed all reactions that 

could not carry a flux in the glutamatergic neuron model. This was done to ensure a direct 

comparison because the other two methods cannot pick up coupled reactions between 

reactions with no fluxes. All HCR sets were detected by the sampling method as perfectly 

correlated (R = 1 or -1). However, not all perfectly correlated reactions from the sampling 

method were detected by HCR calculation. The flux constraints during sampling provide an 

additional means of coupling reactions, thereby allowing the identification of coupled 

reaction sets beyond the stoichiometrically coupled reaction sets from the HCR method. 

Supplementary Table 12. A comparison between different methods used for assessing 

coupled reaction sets. 

  HCR 

FCF (fully 

coupled) 

FCF (partially 

coupled) 

Sampling (perfect 

correlation) 

Number of Sets 232 80 83 340 

Average Length 2.99 2.8875 2.96 2.17 

Max Length 14 7 11 19 

Min Length 2 2 2 2 

 



We subsequently compared the sampling method to FCF. FCF returns sets of reactions that 

are fully, partially or directionally coupled. The fully coupled reactions were similar to the 

hard coupled sets and the perfectly correlated reactions calculated from randomized 

sampling (Supplementary Table 12). In fact, all 80 fully coupled sets from FCF had perfect 

correlations (R = 1 or -1) in the sampling data. It was interesting to see that even though the 

sampling method had a higher maximum set size, the average set size was smaller due to 

more numerous small sets in the sampling results. 

Looking at the partially coupled sets, there were some surprisingly results. There were 82 

different sets that corresponded to 173 reaction pairs that were partially coupled. To 

compare the FCF and sampling methods, we determined the correlation coefficients of the 

173 pairs. 30 pairs had perfect correlation (R = 1 or -1) while 58 had correlation coefficients 

with p values greater than 0.05. Unlike the HCR and FCF (fully coupled) results, the partially 

coupled results were not fully in agreement with the sampling method. We believe there are 

two main reasons. First, most reaction sets that were perfectly correlated from sampling 

were originally reversible and were split into irreversible forward and reverse reactions. The 

perfect correlation could be the result of using an irreversible model where one direction is 

dominant and perfectly correlated while the other is not. Second, uncorrelated reactions can 

be labeled as partially coupled in FCF if fixing a flux using FCF results in even a small change 

in flux. No statistical measure limits the sensitivity of this coupling for certain reactions, and 

thus insignificant pairs can be reported in FCF. 

However, overall there is good agreement between the HCR, FCF (fully coupled) and the 

perfectly correlated sampling results. The co-sets from the HCR and FCF (fully coupled) were 

also reported by the sampling method, as well as some additional co-sets that the other 

methods did not pick up. Partially coupled results were not in as good agreement with the 

sampling method because of the use of an irreversible model for FCF, as well as the two 

methods using much different criteria for correlation.  

Identifying genes that decouple α-ketoglutarate dehydrogenase 

from oxidative phosphorylation 

As seen in Figure 3 in the main text and Supplementary Figure 8.d, cholinergic and 

glutamatergic neurons demonstrate a significant coupling between α-ketoglutarate 

dehydrogenase (AKGDm) and oxidative phosphorylation (OxPhos). However, GABAergic 

neurons do not show this property. What causes these neuron-type-specific responses that 

correspond to the pattern of neuron-type sensitivity in AD? To identify potential targets that 

lead to this decoupling of AKGDm to OxPhos, each reaction in the GABAergic model was 

systematically removed, followed by Monte Carlo sampling of the modified model and 

computation of the AKGDm and OxPhos correlation. From this, a handful of neuronal 

reactions, upon removal, significantly couple AKGDm to OxPhos, including atp synthase, 

various glutamate and GABA transporters, and glutamate decarboxylase. The reverse 

computation was done in which each of the coupling reactions were systematically added to 

the glutamatergic model (if not in the model) followed by Monte Carlo sampling of the 

modified model and computation of the AKGDm and OxPhos correlation. From this analysis, 

only one reaction decoupled AKGDm and OxPhos. This reaction (GLUDC_Neuron) is 



catalyzed by glutamate decarboxylase, which is encoded by either of two isoforms of the 

GAD gene. 

Regional specificity of differentially expressed pathways in 

Alzheimer’s Disease using PathWave 

We performed the systematic pattern recognition method PathWave 33 (with 10,000 

permutations) on the three models by mapping the gene expression data, obtained from the 

Gene Expression Omnibus (GSE5281), on the corresponding reactions. This resulted in 

63,352 features for each model. The p-value for each pathway was corrected for multiple 

testing (FDR = 0.05) 34. Only pathways with more than three significantly differentially 

regulated reactions (FDR = 0.05) were further considered. This allowed us to focus on the 

most relevant wavelet features. Each brain region demonstrated a slightly different subset 

of differentially expressed pathways and underlying reactions. The perturbed pathways and 

reactions for each brain region can be found in Supplementary Table 11, but are also 

discussed here. 

Visual cortex (VC) and Superior frontal gyrus (SFG): No significant patterns were identified 

in these regions. This is consistent with previously reported results that these regions show 

little change metabolically in Alzheimer’s disease when compared to age-matched controls 
11. 

Entorhinal cortex (EC): Nine pathways were identified to carry a pattern of significantly 

changed regulation in AD. All 48 differentially regulated reactions were down-regulated. As 

noted in the main text, central energy metabolism (i.e., TCA cycle, Glycolysis, and the 

pentose phosphate pathway) was down-regulated, consistent with the decreased metabolic 

rate reported previously 35. However, the most significantly changed pathway was the 

ethanol and acetate metabolism. Ethanol monooxygenase and alcohol dehydrogenase, both 

responsible for the metabolism of ethanol, were down-regulated. It is possible that this 

lower expression of ethanol-catabolizing genes in Alzheimer’s patients could be serving a 

neuroprotective function for the remaining cells by causing small increases in the brain 

ethanol concentration, since it has been previously shown that moderate increases in 

ethanol concentration in brain increases the expression of heat shock protein 70, which may 

protect against oxidative stress and glutamate excitotoxicity common in Alzheimer’s disease 
36. However, this suggestion is just speculation because the effect of ethanol on AD brain is 

still poorly understood.  Current literature, while supporting the idea that low levels of 

alcohol consumption may decrease the progression of cognitive impairment 37, also suggests 

that larger amounts of alcohol increase the incidence of Alzheimer’s disease 38. However, it 

is unclear if these effects are affected by lifestyles that are associated with different levels of 

drinking 39, or even by misclassification of participants, as seen with studies on alcohol and 

coronary health 40. More work is needed to investigate this suppression of ethanol-

catabolizing genes in AD. 

Hippocampus (HIP): Nine pathways showed significant patterns consisting of 53 down-

regulated reactions. The down-regulation of reactions of the TCA-cycle, malate-aspartate 

shuttle, and glycolysis is consistent with the decreased metabolic rate reported previously 35. 



Interestingly, a couple other pathways were significantly suppressed, although the individual 

reactions therein were only weakly differentially regulated (p < 0.05, but higher than the 

FDR cutoff). Oxidative phosphorylation was weakly down-regulated, while ROS 

detoxification (catalase and glutathione oxidoreductase) was weakly up-regulated in AD to 

cope with increased oxidative stress 38, 41 (except for a significant down-regulation of 

superoxide dismutase; p = 0.0009).  

Posterior cingulate cortex (PC): In total, 19 significantly regulated pathways were identified 

in the PC having in total 151 down-regulated and 2 up-regulated reactions. Central energy 

metabolism (the TCA cycle, glycolysis, the malate-aspartate shuttle, oxidative 

phosphorylation, and glyoxylate metabolism) were all down-regulated 42, consistent with the 

finding that metabolism in this region is decreased more than expected from atrophy 35. In 

addition, there was significant down-regulation of the transport and degradation of various 

amino acids, such as glutamate, cysteine, alanine (through alanine-glyoxylate transaminase), 

lysine, and a decreased expression of the glycine-cleavage complex. 

Middle temporal gyrus (MTG): The middle temporal gyrus has 18 differentially regulated 

pathways with 102 down-regulated and 13 up-regulated reactions. Consistent with the other 

affected brain regions, there is significant suppression of central metabolism (i.e., the TCA 

cycle, glycolysis, the malate-aspartate shuttle, and oxidative phosphorylation). For heme 

biosynthesis, protoporphyrinogen oxidase, uroporphyrinogen-III synthase, 

uroporphyrinogen decarboxylase, and mitochondrial ferrochelase were down-regulated (p < 

0.0009) which suggests that there may be decreased heme production. Since heme is 

important for cytochrome c oxidase function, it has been previously suggested that a 

disruption in the pools of different hemes may contribute to the pathology of Alzheimer’s 

disease 43. Thus, the bioenergetics of this region may be suppressed due to a decreased 

cytochrome c oxidase function from a decreased biosynthetic capacity of heme.  

Identifying feasible pathways which can couple acetylcholine 

production to mitochondrial acetyl-CoA 

Metabolism is arguably one of the best characterized biomolecular systems in human. 

However, a recently published neurochemistry textbook states, “The acetyl-CoA used for 

acetylcholine synthesis in mammalian brain comes from pyruvate formed from glucose. It is 

unclear how the acetyl-CoA, generally thought to be formed at the inner membrane of the 

mitochondria, accesses the cytoplasmic choline acetyltransferase (ChAT)” 22. It has been 

clearly demonstrated in numerous studies that the acetyl group of mammalian neuronal 

acetylcholine is derived from the mitochondrial acetyl-CoA pool 44, 45, and that acetylcholine 

production is dependent on oxidative metabolism 46. However, it is surprising that 

something as simple as how the acety-CoA in the mitochondria can contribute to cytosolic 

acetylcholine production has eluded discovery for decades. A few pathways have been 

proposed, but several questions still remain 47. 

This connection is of great interest since it has been shown that the tight coupling of 

metabolism with acetylcholine production facilitates treatments that increase glucose 



uptake in the brain to improve cognitive functions in rats 48-50 and humans with severe 

cognitive pathologies, such as Alzheimer’s Disease and Trisomy-21 51, 52. 

As discussed in the main text and methods, an FBA-derived approach was employed to 

identify all possible pathways using known reactions in the human metabolic network. The 

Singular Value Decomposition of all possible reaction sets helped elucidate the dominant 

sets of reactions, and their major dependencies, that could be used to couple mitochondrial 

acetyl-CoA metabolism and cytosolic acetylcholine metabolism. The first singular vector 

provided information on the number of times a reaction was used for a pathway, i.e., 

reactions with large loadings were found in many pathways. The second and third singular 

vectors, however, show groups of reactions that occur more often together or less 

frequently. Visual inspection of these vectors helped elucidate 3 potential mechanisms. 

Predicted pathways seen in the second and third singular vectors include the following:  

1. Acetate can form acetyl-CoA through acetyl-CoA synthetase (ACS) (Figure 5.a). 

However, this is enzyme is cytosolic. Therefore, to couple mitochondrial acetyl-CoA 

and cytosolic acetate, a series of additional enzymes are needed. This can be done 

using aspartate N-acetyltransferase (ASPNATm) to make N-acetyl-L-apartate, which 

is then transported across the mitochondrial membrane (NACASPtm), and 

hydrolyzed by N-acetyl-L-aspartate amidohydrolase (NACASPAH). Several malate-

aspartate shuttle enzymes are further needed for this pathway to shuttle the 

aspartate back to the mitochondrion (e.g., ASPGLUm and GLUt2m). The only 

problems with this mechanism are that several of the enzymes show little or no 

neuronal expression. High-throughput data and the literature demonstrate that 

cytosolic acetyl-CoA synthetase is not active in neurons 53. Also, N-acetyl-L-aspartate 

amidohydrolase is not significantly expressed neurons, rather in oligodendrocytes 54 

for myelin sheath production. Therefore it is unlikely that this pathway is 

contributing to the mitochondria/acetylcholine coupling.  

2. Acetyl-CoA can be incorporated into the citric acid cycle by citrate synthase (CSm) to 

form citrate (Figure 5.b). This citrate is then shuttled to the cytosol through a citrate-

malate antitransporter (CITtam). Once in the cytosol, the acetyl-CoA can be 

produced by citrate lyase or ATP citrate lyase 55 (ACITL). The malate-aspartate 

shuttle is also used to replenish the cytosolic malate pool (AKGMALtm, ASPTAm,  

ASPTA, and ASPGLUm). Several studies have suggested that that ACITL might be of 

physiological importance in linking mitochondrial acetyl-CoA with cytosolic 

acetylcholine synthesis, with experimental evidence such as isotope-labeling 

experiments 45 and co-localization of choline acetyltransferase with citrate lyase 56. 

However, its importance has been questioned when a study demonstrated that 

when citrate lyase is inhibited by (-)-hydroxycitrate, the synthesis rate of 

acetylcholine from glucose or pyruvate decreased to only ~70% of control 57. 

3. A third possible pathway involves mitochondrial ketone body synthesis (Figure 5.c). 

Mitochondrial acetyl-CoA can be converted into acetoacetate by mitochondrial 

acetyl-CoA C-acetyltransferase and 3-oxoacid CoA-transferase (ACACT1rm and 

OCOAT1m), which can then be transported into the cytosol (ACACt2m) and 



converted to acetoacetyl-CoA by acetoacetyl-CoA:acetate CoA-transferase (AACOAT) 

and then to acetyl-CoA by acetyl-CoA C-acetyltransferase (ACACT1r) 58, 59. It is 

plausible that this pathway is used since it has been reported that ketone bodies, 

such as beta-hydroxybutyrate 60 and acetoacetate 61, can act as precursors to the 

acetyl moiety of acetylcholine. 

While this analysis helped guide manual curation for these pathways, a thorough literature 

search identified a fourth potential pathway, which was not seen in the SVD results. It has 

been suggested that acetyl-CoA can be produced from acetyl carnitine via cytosolic carnitine 

acetyl transferase (CSNATr). This has also been investigated experimentally and evidence has 

been presented that in the cytosol, labeled acetylcarnitine can produce labeled acetylcholine 

in both brain slices and synaptosomes 62, 63; however, these studies did not demonstrate that 

the acetylcarnitine associated with the mitochondrial metabolism, since the tissue samples 

were only incubated in acetylcarnitine 63. Moreover, the labeled neurotransmitter yield was 

low, except when the synaptosomes were incubated in higher concentrations of 

acetylcarnitine. Therefore, this pathway is likely of little importance in the brain 47. It should 

also be mentioned that such a mechanism would require the carnitine shuttle to run in 

reverse by passing acetyl carnitine from the mitochondria to the cytosol 64, and therefore 

cannot explain the coupling of mitochondrial metabolism to cytosolic acetylcholine 

production. Therefore, this pathway was not analyzed further. 

Pathways 2 and 3 are best supported by the literature and by the high-throughput data. 

However, pathway 1 could not be made functional in our models without the addition of 

reactions that are known not to be found in neurons. When pathways 2 and 3 were tested 

separately and together, they are functional and will produce acetylcholine. When tested 

separately, both the fluxes of both correlate significantly with the choline acetyltransferase 

flux (p < 3 x 10-90); however, pathway 2 is only weakly correlated (r = 0.28), while pathway 3 

is more strongly correlated (r = 0.81). Consistent with experimental inhibition of (ACITL), the 

in silico inhibition of ACITL only partially reduces acetylcholine production (by 7.3%). 

However, the inhibition of pathway 3 reduces acetylcholine production by 39%. In vivo 

perturbation of these pathways should cause more significant changes than the in silico 

simulations, since in the models, if one pathway is inhibited, the other can immediately 

increase flux as needed, but in vivo, transcriptional regulatory programs would need to 

change. Therefore, these results are consistent with experimental results that have shown 

that when ACITL is inhibited, acetylcholine production continues at 70% of the WT rate 57. 

Predicting cholinergic neurotransmission 

The work of Gibson et al. 45 has provided experimental data that, in theory, can be used to 

predict the contribution of cholinergic neurotransmission to total brain activity. In this study, 

rat brain minces were incubated in solutions that contained [1-14C]-pyruvate or [2-14C]-

pyruvate. Acetylcholine and radio-labeled CO2 were subsequently measured. Several 

pyruvate dehydrogenase inhibitors were used to demonstrate that when pyruvate 

dehydrogenase was inhibited, acetylcholine production was also suppressed.  

With the model, simulations were conducted in which the brain was allowed a specified 

range of pyruvate (covering the range seen from 45). Using Monte Carlo sampling, all 



functional metabolic states were computed for a normal brain, and then for several levels of 

inhibition of pyruvate dehydrogenase. The simulations successfully reproduced the linear 

relationship between acetylcholine production and metabolic rate seen experimentally, and 

acetylcholine production was correlated with CO2 release (r=0.68). However, the predicted 

acetylcholine production was too high. This was expected since the model assumes that all 

neurons in the brain are cholinergic, while the actual amount is not known. If this 

percentage were known, it could simply used to scale cholinergic-specific reactions (such as 

choline acetyltransferase).  

The percentage cholinergic neurotransmission was computed based on published data 45. 

The previously published data were obtained from rat brain minces that were incubated in 

solutions containing [1-14C]-pyruvate or [2-14C]-pyruvate. Both acetylcholine and radio-

labeled CO2 were measured at various titrations of several different inhibitors of pyruvate 

dehydrogenase. Inhibitors were as follow: 2-oxybutyrate, bromopyruvate, pentobarbital, 2-

oxo-4-methylpentanoate, 2-oxobutyrate, amobarbital, 2-oxo-3-methylpentanoic acid, 

leucine, and 2-oxo-3-methylbutanoate. Based on network structure, most of the radio-

labeled carbon from [1-14C]pyruvate will be converted to radio-labeled CO2 from pyruvate 

dehydrogenase and TCA cycle enzymes (via pyruvate carboxylase). However, the bulk of 

radio-labeled carbon from the [2-14C]pyruvate will be converted to radio-labeled CO2 in the 

TCA cycle, though a portion of the radio-labeled carbon will be sequestered through 

biosynthetic pathways that siphon off TCA cycle intermediates. 

Simulations were conducted using the cholinergic model. The models were allowed to take 

up the same substrates provided experimentally 45, at rates consistent with the data. Monte 

Carlo sampling was used to identify all feasible flux states. This was done for various levels of 

pyruvate dehydrogenase inhibition ranging from 0 to 90% inhibition. The percentage 

cholinergic neurotransmission was computed by randomly selecting a feasible flux state 

from each level of pyruvate dehydrogenase inhibition and computing the slope of between 

choline acetyltransferase and radio-labeled CO2–producing reactions. For [1-14]-CO2, the CO2 

producing reactions included neuronal and astrocytic pyruvate dehydrogenase. In addition, 

the flux of astrocytic pyruvate carboxylase was also taken into account since it can 

incorporate the labeled CO2, which would be later lost through isocitrate dehydrogenase. 

Specifically, this was computed as follows: 

labeled CO2 produced = PDHm_Neuron + PDHm + PCm, 

where PDHm_Neuron and PDHm are the fluxes through the neuronal and astrocytic 

pyruvate dehydrogenase, respectively, and PCm is the flux through astrocytic pyruvate 

carboxylase. 

For [2-14]-CO2, the labeled CO2-producing reactions are astrocytic and neuronal isocitrate 

dehydrogenase and α-ketoglutarate. However, since labeled carbon can also be sequestered 

in other products, the amount of CO2 was adjusted to account also for the amount of labeled 

carbon expected to be sequestered in acetate, glutamate and glutamine. Specifically, this 

was computed as follows: 



labeled CO2 produced = (ICDHxm + ICDHxm_Neuron + ICDHyrm + ICDHyrm_Neuron + 

AKGDm + AKGDm_Neuron - 2 * EX_ac(e) – 3 * EX_gln-L(e) – 3 * EX_glu-L(e)) / 2 

where ICDHxm_Neuron, ICDHyrm_Neuron, ICDHxm, and ICDHyrm are isoforms of neuronal 

and astrocytic isocitrate dehydrogenase, AKGDm and AKGDm_Neuron are astrocytic and 

neuronal α-ketoglutarate dehydrogenase, and EX_ac(e), EX_gln-L(e), and EX_glu-L(e) 

represent the efflux of acetate, glutamine and glutamate from the brain.  

A similar slope of acetylcholine production vs. labeled CO2 production was generated from 

random points sampled from the reported experimental distributions. The ratio of the 

experimental and in silico slopes represents a feasible percentage cholinergic 

neurotransmission. This was repeated 1000 times, yielding the distributions in 

Supplementary Figure 9 and a median value of 3.3%. This amount is lower than the 

experimentally determined percentage of cholinergic neurons in the rat basal forebrain, 

where it was determined that neurons with choline acetyltransferease make up ~6% of the 

neurons 65; however, this higher percentage is of no surprise since the basal forebrain is a 

major center of cholinergic neurons, and functions in which the basal forebrain participates 

(e.g., attention, learning, and memory) depend on cholinergic processes. 



 

Supplementary Figure 9. Percentage of brain neurotransmission associated with 

cholinergic function as predicted from reconciliation of model with each experimental 

data set. Fourteen sets of experimental data in which brain minces were fed 14C-labelled 

pyruvate, followed by the measurement of 14C-labeled CO2 and/or acetylcholine were 

compared with model predictions. For each experiment (blue), a distribution of computed 

percent brain fractions is shown, representing the range of feasible amounts of the brain 

that can generate the response seen in the experimental data. Data results for all 

calculations conducted with [1-14C]-pyruvate and [2-14C]-pyruvate data (green) show a slight 

difference; however, the median values are well within the 25th and 75th percentiles 

(boxes). Individual drug treatments which allow for the computation are as follow: a) 2-

oxybutarate, b) bromopyruvate, c) pentobarbital, d) 2-oxo-4-methylpentanoate, and e) 

amobarbital.  

Parameter usage from rat brain 

In this work, a few model parameters were used based on rat data when comparable human 

data was not attainable. These two parameters are the ratio of neuronal to astrocytic 

glucose uptake rates, and the ratio of glutamatergic to GABAergic neurons (Supplementary 

Table 5).  

For the cell-type-specific glucose uptake rate, data was obtained from a study that used a 

fluorometric assay to measure the difference between the astrocytic and neuronal glucose 

uptake rates 66. Unfortunately, no similar measurements for human are attainable at this 

time. This is only a concern because rats have a higher neuron:astrocyte ratio. This ratio is 

0.7:1 in human and 2.5:1 in rat brain 67. However, there is no literature that compares the 

difference in the metabolic rates of the neurons and astrocytes in human. Therefore, the 

neuron:astrocyte ratios can be extrapolated to the glucose metabolic rates of the different 

cell populations in rat. This was implemented, and neuronal effects of the AKGDm inhibition 



presented in Figure 3 of the main text were recomputed. When this is done, the same 

results presented in the main text are attained (Supplementary Figure 10). Because there is 

no solid evidence that the differences in the neuron:astrocyte ratio are also reflected in the 

metabolic rates of these cell populations, we have retained the rat values in the model. 

 

Supplementary Figure 10. Results in this work are not affected by adjusting the rat 

Neuron/Astrocyte glucose uptake rate ratio to reflect the difference in the 

Neuron/Astrocyte ratio in human vs. rat. When the glucose uptake rates for the different 

cell populations in the models were adjusted to account for the difference in cell population 

ratios between human and rat, the results are essentially the same as if the ratios from rat 

brain are used for both (a) the rate of cerebral CO2 release and (b) flux through oxidative 

phosphorylation. 

 

A second parameter was derived that allowed the imposition of lower bound on the release 

of GABA and glutamate from the neurons into the synapses. These bounds were derived 



using the human rate of glutamate cycling in the brain and the ratio of the number of 

glutamatergic to GABAergic neurons in rat. However, this parameter is only relevant to the 

analysis of the loss of AKGDm activity in Alzheimer’s disease brain in the main text. 

Therefore, the glutamatergic/GABAergic neuron ratio was varied from 5/1 to 0.8/1 (rat is 

3/1) and the AKGDm inhibition analysis was redone (Supplementary Figure 11). Again, the 

only analysis in the main text that might be affected by this parameter was robust against its 

variation.  

 

Supplementary Figure 11. Results in this work are not affected by adjusting the rat 

glutamatergic/GABAergic neuron ratio. The glutamatergic/GABAergic neuron ratio was 

varied, ranging from the assumption that glutamatergic neurons are more abundant in 

human than rats (a), to the assumption that they are more abundant in rat (b). As is 

apparent when comparing panels (a) and (b), this analysis demonstrates that there is almost 

no difference in the results, showing the robustness of this model result against variations in 

this parameter. 

This analysis demonstrates that while it is expected that differences in these parameters are 

biologically meaningful in vivo, they are not governing constraints that affect the analyses in 

this work. However, future use of these parameters should, in like manner, be validated for 

robustness, since it is expected that these parameters will affect questions that compare 

astrocyte to neuron metabolism or that compare the levels of GABAergic and glutamatergic 

neurotransmission. 
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