SUPPLEMENTARY TABLE 1. Plasmids use	d in	this	study
-------------------------------------	------	------	-------

Plasmid	Precursor	Description	Source
pC3286	p4437	integrating URA3 P _{CUP1} -UBI-R-tif51a-td plasmid	This study
pC3287	YCplac111	sc LEU2 TIF51A plasmid	This study
pC3288	YCplac33	sc URA3 TIF51A plasmid	This study
pC3289	YEplac181	hc LEU2 TIF51A plasmid	This study
pC3290	pC3289	hc LEU2 C-terminal FLAG-tagged TIF51A plasmid	This study
pC3291	pC3290	hc <i>LEU2</i> C-terminal FLAG-tagged <i>tif51a^{K51R}</i> plasmid	This study
pC3293	pC3292	sc LEU2 tif51a-D63V plasmid	This study
pC3294	pC3292	sc LEU2 tif51a-S149P plasmid	This study
pYDL-control			Dinman JD ¹
pYDL-LA			Dinman JD ¹
pYDL-Ty1			Dinman JD ¹
pYDL-LA0			Dinman JD ¹

Single copy (sc) or high copy (hc) number plasmid

¹ Harger, J. W. & Dinman, J. D. An *in vivo* dual-luciferase assay system for studying translational recoding in the yeast *Saccharomyces cerevisiae*. *RNA* **9**, 1019-1024 (2003).

SUPPLEMENTARY TABLE 2. S. cerevisiae strains used in this study

Strain	Precursor	Genotype	Source
H2557		MAT $lpha$ trp1-63 ura3-52 leu2-3 leu2-112 GAL2+ gcn2 Δ	Hinnebusch AG
J691	H2557	MAT $lpha$ trp1-63 ura3-52 leu2-3 leu2-112 GAL2+ gcn2 \varDelta tif51b::KANMX4	This study
J692	J691	MAT $lpha$ trp1-63 ura3-52 leu2-3 leu2-112 GAL2+ gcn2 \varDelta tif51b::NAT	This study
J693	J692	MATα/a trp1-63/trp1-63 ura3-52/ura3-52 leu2-3/leu2-3 leu2-112/leu2-112	This study
		GAL2 ⁺ /GAL2 ⁺ gcn2∆/gcn2∆ tif51b::NAT/tif51b::NAT	
J694	J693	MATα/a trp1-63/trp1-63 ura3-52/ura3-52 leu2-3/leu2-3 leu2-112/leu2-112	This study
		GAL2⁺/GAL2⁺ gcn2∆/gcn2∆ tif51b::NAT/tif51b::NAT pC3288[TIF51A, URA	3]
J695	J694	MATα/a trp1-63/trp1-63 ura3-52/ura3-52 leu2-3/leu2-3 leu2-112/leu2-112	This study
		GAL2 ⁺ /GAL2 ⁺ gcn2∆/gcn2∆ tif51b::NAT/tif51b::NAT tif51a::KANMX4/TIF5	1A
		pC3288[<i>TIF51A, URA3</i>]	
J696	J695	MAT $lpha$ trp1-63 ura3-52 leu2-3 leu2-112 GAL2+ gcn2 ${\it \Delta}$ tif51b::NAT	This study
		<i>tif51a::KANMX4</i> pC3288[<i>TIF51A, URA3</i>]	
J697	J696	MAT $lpha$ trp1-63 ura3-52 leu2-3 leu2-112 GAL2+ gcn2 ${\it \Delta}$ tif51b::NAT	This study
		<i>tif51a::KANMX4</i> pC3287[<i>TIF51A, LEU2</i>]	
J698	J696	MAT $lpha$ trp1-63 ura3-52 leu2-3 leu2-112 GAL2+ gcn2 ${\it \Delta}$ tif51b::NAT	This study
		<i>tif51a::KANMX4</i> pC3293[<i>tif51a-D63V, LEU2</i>]	
J699	J696	MAT $lpha$ trp1-63 ura3-52 leu2-3 leu2-112 GAL2+ gcn2 \varDelta tif51b::NAT	This study
		<i>tif51a::KANMX4</i> pC3294[<i>tif51a-S149P, LEU2</i>]	
J700	H2557	MAT $lpha$ trp1-63 ura3-52 leu2-3 leu2-112 GAL2+ gcn2 ${\it \Delta}$	This study
		ubr1::P _{GAL1} -myc-UBR1-TRP1	
J701	J700	MAT $lpha$ trp1-63 ura3-52 leu2-3 leu2-112 GAL2+ gcn2 ${\it \Delta}$	This study
		ubr1::P _{GAL1} -myc -UBR1-TRP1 P _{CUP1} -UBI-R-tif51a-td::URA3::tif51a	

J702	J701	MAT $lpha$ trp1-63 ura3-52 leu2-3 leu2-112 GAL2+ gcn2 ${\it \Delta}$	This study
		ubr1:: P _{GAL1} -myc -UBR1-TRP1 P _{CUP1} -UBI-R-tif51a-td::URA3::tif51a	
		tif51b::KANMX4	
J703	J702	MAT $lpha$ trp1-63 ura3-52 leu2-3 leu2-112 GAL2+ gcn2 ${\it \Delta}$	This study
		ubr1:: P _{GAL1} -myc-UBR1-TRP1 P _{CUP1} -UBI-R-tif51a-td::URA3::tif51a	
		<i>tif51b::KANMX4</i> pC3290[<i>TIF51A-FLAG, LEU2</i>]	
J704	J702	MAT $lpha$ trp1-63 ura3-52 leu2-3 leu2-112 GAL2+ gcn2 ${\it \Delta}$	This study
		ubr1:: P _{GAL1} -myc-UBR1-TRP1 P _{CUP1} -UBI-R-tif51a-td::URA3::tif51a	
		<i>tif51b::KANMX4</i> pC3291[<i>tif51a^{K51R}-FLAG, LEU2</i>]	
J713	J700	MAT $lpha$ trp1-63 ura3-52 leu2-3 leu2-112 GAL2+ gcn2 ${\it \Delta}$	This study
		ubr1::P _{GAL1} -myc-UBR1-TRP1 YCplac33	
J714	J713	MAT $lpha$ trp1-63 ura3-52 leu2-3 leu2-112 GAL2+ gcn2 ${\it \Delta}$	This study
		ubr1::P _{GAL1} -myc-UBR1-TRP1 tif51b::KANMX4 YCplac33	
YAJ2		MATa trp1∆ ura3-52 leu2-3,-112 gcn2∆∷hisG	Hinnebusch AG ¹
		P _{GAL} -myc-UBR1::TRP1::ubr1	
YAJ22		MATa trp1∆ ura3-52 leu2-3,-112 gcn2∆∷hisG	Hinnebusch AG ¹
		P _{GAL} -myc-UBR1::TRP1::ubr1 P _{CUP1} -UB I-R-HA- tif32 ^{td} ::URA3::tif32	
SL797-	2C	MATa met8-1 leu2-1 aro7-1 trp1-1 his5-2 lys2-1 ura3-52 sup35-4	Liebman SW ²

¹ Jivotovskaya, A. V., Valasek, L., Hinnebusch, A. G. & Nielsen, K. H. Eukaryotic translation initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of eIF4G in yeast. *Mol Cell Biol* **26**, 1355-1372 (2006).

² All-Robyn, J. A., Kelley-Geraghty, D., Griffin, E., Brown, N. & Liebman, S. W. Isolation of omnipotent suppressors in an [*eta*⁺] yeast strain. *Genetics* **124**, 505-514 (1990).

Supplementary Figure 1: Impaired growth and rapid depletion of eIF5A in *tif51a-td* strain under non-permissive conditions. **a**, Isogenic WT (J714) and *tif51a-td* mutant (J702) strains were grown in SC medium containing 2% raffinose as a carbon source and 100 μ M copper sulphate (SC_{Raf} + Cu²⁺; permissive condition) to OD₆₀₀ ~ 1.0, washed at room temperature to remove Cu²⁺, split in halves, and incubated under permissive or non-permissive conditions (SC_{Gal}; SC containing 2% galactose lacking copper). **b**, Western analysis of eIF5A. Strains described for panel **b** were cultured under the same conditions as for panel **a**, and WCEs were prepared and subjected to western analysis using antibodies against the indicated proteins. Immune complexes were visualized by chemiluminescence.

а

Supplementary Figure 2: Retention of polysomes in *tif51a-D63V* and *tif51a-S149P* mutant strains at restrictive temperatures. Isogenic WT (J697), *tif51a-D63V* (D63V; J698), and *tif51a-S149P* (S149P; J699) strains were grown to mid-log phase at 25 °C in SC medium, pelleted, and diluted to A_{600} of ~0.5 with either 25 °C or pre-warmed 38 °C media. Cultures were then incubated for 2 h at 25 or 38 °C, respectively, and WCEs were prepared and separated on 4.5% to 45% sucrose gradients by centrifugation at 39,000 rpm for 2.5 h. Gradients were fractionated while scanning at 254 nm to visualize the indicated ribosomal species. Polysome to monosome (P/M) ratios were calculated by comparing the areas under the 80S and polysome peaks. \downarrow polysomes indicates reduced amount of polysomes.

Supplementary Figure 3: Polysome analysis in termination factor eRF3 (*sup35-4*) mutant strain and in sordarin-treated WT strain. a, The *sup35-4* temperature-sensitive mutant strain SL797-2C transformed with either an empty vector (*sup35-4*) or a *SUP35* plasmid (WT) was grown to mid-log phase at 25 °C in YEPD medium, pelleted, and diluted to A_{600} of ~0.5 with either 25 °C or pre-warmed 37 °C media. Cultures were then incubated for 2 h at 25 or 37 °C and cells were either untreated or treated with 50 µg/ml CHX for 5 min before harvesting. WCE preparation, sucrose gradient analysis, and P/M ratio calculation were performed as described for supplementary Figure 2. **b**, The WT strain J714 was grown in SC_{Gal}-Cu²⁺ for 14 h with the final 5h in the absence or presence of 2 µg/ml of sordarin. WCE preparation, sucrose gradient analysis, and P/M ratio calculation were performed as described for supplementary Figure 2. ↓polysomes indicates reduced amount of polysomes.

Supplementary Figure 4: Representative fits from *in vitro* elongation and termination experiments. Reconstituted elongation and termination assays were carried out in triplicate as described in the text and Methods. As previously mentioned, single-exponential curves were fitted to the data to obtain rate constants and endpoints. Representative curves are shown for (a) an elongation assay and (b) a release assay. $f_{endpoint}$ is the ratio of peptide at any given data point to the endpoint value generated in the curve fitting process. Note that the time (x) axis in (b) is twice as long as in (a).

Supplementary Figure 5: eEF2 inhibitor sordarin and *tif51a-D63V* mutation decrease +1 ribosomal frameshifting at 38 °C. Dual-luciferase reporter plasmids containing firefly (F) and *Renilla* (R) luciferase coding regions separated by the +1 programmed ribosomal frameshift (PRF) signal from the yeast Ty1 retrotransposon or the -1 PRF signal from the yeast L-A virus¹, or the relevant 0-frame control were introduced into WT and *tif51a-D63V* mutant strains. Where indicated, cultures contained 200 ng/ml sordarin. PRF efficiencies (%) were calculated by dividing the ratio of F to R luciferase obtained with the reporter versus the 0-frame control plasmid. Results are the average of at least three independent experiments; *P*-values for -1 PRF were 0.08 (WT vs. D63V) and 0.54 (WT +/- sordarin).

¹ Harger, J. W. & Dinman, J. D. An *in vivo* dual-luciferase assay system for studying translational recoding in the yeast *Saccharomyces cerevisiae*. *RNA* **9**, 1019-1024 (2003).