Supplementary materials

A structural determinant required for RNA editing

Nan Tian¹, Yun Yang¹, Nora Sachsenmaier², Dominik Muggenhumer³, Jingpei Bi¹, Christina Waldsich², Michael F. Jantsch³, Yongfeng Jin^{1*}

¹Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, P. R. of China,

²Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Austria

³Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Austria

Correspondence (*) should be addressed to Yongfeng Jin 0086-571-88206479(Tel); 0086-571-88206478(Fax); jinyf@zju.edu.cn(e-mail);

Abbreviations: Hsa (Homo sapiens); Ptr (Pan troglodytes); Mmul (Macaca mulatta); Cfa (Canis familiaris); Eca (Equus caballus); Bta (Bos taurus); Rno (Rattus norvegicus); Mmu (Mus musculus); Mdo (Monodelphis domestica); Oan (Ornithorhynchus anatinus); Gga (Gallus gallus); Ain (Aspidoscelis inornata); Cre (Chinemys reevesii); Xla (Xenopus laevis) ; Dre (Danio rerio); Fru (Fugu rubripes).

Supplementary Figure 1-3

Supplementary Figure Table S1

Figure S1 Tissue specificity regulation of Gabra-3 RNA expression and editing (I/M site) (A) Bulk-sequence analysis of Gabra3 RT-PCR amplicons in different tissues. The chromatogram of RT-PCR from lizard (Ain), crocodile (Csi), and turtle (Cre) brain showed A-to-I editing as a mixed A/G peak. But in small intestine, kidney, adrenal of them is only A

signal in electropherogram trace. (B) Quantitative analyses of Gabra3 mRNA levels in brain,small intestine, kidney, adrenal of lizard, crocodile and turtle.

Figure S2. A series of mutants were mimicked a duplex structure to analyzed the effect on RNA editing. (A, B) Schematic diagrams of wild-type (WT) and mutant (M) minigene constructs involved in *in vivo* editing assays, based on chicken Gabra1 (A) and *D. rerio* Gabra5 (B). The edited A is circled, and the mutated nucleotides are shaded in colour. A red cross marks the failure to detect RNA editing (<5%). The conserved stems (Stem 1, 2, 3) are gradually mutated to be nearly or even completely identical to mammalian gabra3. However, the resulting structure still failed to restore editing. By contrast, only mutation in combination with substitution in a nonconserved region could restore editing to wild-type level. (C, D) Editing levels of the various transcripts after injection *Xenopus* oocyte nuclear. RNA editing level of mutants was quantified using a restriction enzyme appropriate for each mutated editing site (see Methods).

Figure S3. Perfect pairing at variable region by mutation led to marked decrease of editing level.(A) RNA secondary structure of wild-type (W) and mutant (M) minigene constructs involved in *in vivo* editing assays. The edited A is circled, and the mutated nucleotides are shaded in colour. (B) Editing levels of the various transcripts after injection *Xenopus* oocyte nuclear.

Primer	Sequence	Primer	Sequence
Gabra-03 c	loning and sequencing		
Csi -5-1	GACCACATTAAGTATCAGCG	Csi -3-1	GTGAAGTAGTTGACGGTGGCA
Ain -5-1	GACTACTCTGAGCATCAGCGC	Ain -3-1	CGTGAAGTAGTTGACCGCTGCA
Cre -5-1	ATGACCACACTGAGCATC	Cre -3-1	CCGCTTGGTGAAGTAGTTGA
Cor -5-1	ATGACCACATTAAGTATC	Cor -3-1	ACAAAGGCGTAGCACAGC
Universal primer-5-1	GG(A/G/T/C)GTCACCAC(A/G/T/C)GT(T/G)CT(T/G/A/C) AC(C/T)ATGAC	Universal primer-3-1	AC(C/T)TT(C/T)TT(G/A/T/C)CC(A/G)TCC CAAGCCCA(G/A)CT
RNA editin	g analysis		
Hsa3-wt-5-1	TAATACGACTCACTATAGGGTGGCATATGCGACGGC	Hsa3-wt-3-1	AAGGCATAACAGACGGC
Bta3-wt-5-1	CAT TAATACGACTCACTATAGGGGTGGCATATGCGACGGC	Bta3-wt-3-1	AAGGCATAACACACGGC
Gga1-mu-5-1	CATGGAT TAATACGACTCACTATAGGGTGGCATACGCCACTGCC	Gga1-mu-3-1	AAGGCATAGCACACCGC
Dre5-mu-5-1	TAATACGACTCACTATAGGGTGGCGTATGCTACCGCC ATGGA	Dre5-mu-3-1	AAGGCATAGCAGACCGC
Mmu3-wt-5-1	TAATACGACTCACTATAGGGTGGCATACGCGACGGC CAT	M1-5-1	TAATACGACTCACTATAGGGTGGCATAT GCGACGGCCATGGACAGGT
M2-5-1	TAATACGACTCACTATAGGGTGGCATATGCGACGGCC ATGGACTCGT	M3-5-1	TAATACGACTCACTATAGGGTGGCATAT GCGACGGCCATGGACTGCT
M4-5-1	TAATACGACTCACTATAGGGTGGCATATGCGACGGCC ATGGACGGT	M5-5-1	TAATACGACTCACTATAGGGTGGCATAT GCGACGGCCATGGACTTGC
M6-5-1	TAATACGACTCACTATAGGGTGGCATATGCGACGGCC ATGGACTTGGCT	M7-5-1	TAATACGACTCACTATAGGGTGGCATAT GCGACGGCCATGGTCTGGTT
M8-5-1	TAATACGACTCACTATAGGGTGGCATATGCGACGGCC ATGGACTGGTTTAT	M9-5-1	TAATACGACTCACTATAGGGTGGCATAT GCGACGGCCATGGACTGGTTGAT
M10-5-1	TAATACGACTCACTATAGGGTGGCATATGCGACGGCC TTGGACTGGTTCAA	M11-5-1	TAATACGACTCACTATAGGGTGGCATAT GCGACGGCCGTGGACTGGTTCAC
M12-5-1	TAATACGACTCACTATAGGGTGGCATATGCGACGGCC CTGGACTGGTTCAG	M13-5-1	TAATACGACTCACTATAGGGTGGCATAT GCGACGGCAAT
M14-5-1	TAATACGACTCACTATAGGGTGGCATATGCGACGGCT AT	M15-5-1	TAATACGACTCACTATAGGGTGGCATAT GCGACGGCGAT
M16-5-1	TAATACGACTCACTATAGGGTGGCATATGCGACGGGC AT	M16-3-1	AAGGCATAACAGACGGG
M17-5-1	TAATACGACTCACTATAGGGTGGCATATGCGACGGTC AT	M17-3-1	AAGGCATAACAGACGGT
M18-5-1	TAATACGACTCACTATAGGGTGGCATATGCGACGGAC AT	M18-3-1	AAGGCATAACAGACGGA
M19-5-1	TAATACGACTCACTATAGGGTGGCATATGCGACGGTC GTGGACTGGTTCAC	M20-5-1	TAATACGACTCACTATAGGGTGGCATAT GCGACGGTCCTGGACTGGTTCAG
M21-5-1	TAATACGACTCACTATAGGGTGGCATATGCGACGGAC CTGGACTGGTTCAG	M22-5-1	TAATACGACTCACTATAGGGTGGCATAT GCGACGGGCCTGGACTGGTTCAG
M23-5-1	TAATACGACTCACTATAGGGTGGCATATGCGACCGCC A	M23-3-1	AAGGCATAACAGACCGC
M26-5-1	TAATACGACTCACTATAGGGTGGCATATGCGACAGCC AT	M26-3-1	AAGGCATAACAGACAGC
M27-5-1	TAATACGACTCACTATAGGGTGGCTTATGCGACGGCC AT	M27-3-1	AAGGCTTAACAGACGGC
M29-5-1	TAATACGACTCACTATAGGGTCGCATATGCGACGGCC AT	Mmu-M1-5-1	TAATACGACTCACTATAGGGTGGCATACGTGAC GGCCAT
Mmu-M1-3-1	AAGGCATAACGGACGGC	Mmu-M3-5-1	TAATACGACTCACTATAGGGTGGCATACGCGAC GGCCAT
Mmu-M3-3-1	AAGGCATAGCGGACGGC	Mmu-M4-5-1	TAATACGACTCACTATAGGGTGGCATATGCGAC GGCCAT
Mmu-M4-3-1	AAGGCATAGCAGACGGC	Mmu-M8-5-1	TAATACGACTCACTATAGGGTGGCATACGCCAC GGCCAT
D1-5-1	TAATACGACTCACTATAGGGATGCGACGGCCAT	D1-3-1	AACAGACGGCTATGAACCAGTCCAT

Table S1 Primers used for the RT-PCR and PCR analysis

D2-5-1	TAATACGACTCACTATAGGGTACGCGACGGCCAT	D2-3-1	AACAGACGGCTATGAACCAGTCCAT
D3-5-1	TAATACGACTCACTATAGGGCGACGGCCATGGATTGG TTCAT	D3-3-1	ACACACGGCTATGAACCAAT
D4-5-1	TAATACGACTCACTATAGGGCGACGGCCATGGACTGG TTCAT	D4-3-1	AGACGGCTATGAACCAGTCCAT
D5-5-1	TAATACGACTCACTATAGGGACGGCCATGGATTGGTT CAT	D5-3-1	CACGGCTATGAACCAAT
D6-5-1	TAATACGACTCACTATAGGGTCGGCCAT	D6-3-1	ACGGCTATGAACCAATCCAT
D7-5-1	TAATACGACTCACTATAGGGGGGCCAT	D7-3-1	CGGCTATGAACCAATCCAT
D8-5-1	TAATACGACTCACTATAGGGCGCCAT	D8-3-1	GGCTATGAACCAATCCAT