Antisense RNA associated with biological regulation of a restriction-

modification system

Running title: Restriction modification and RNA

Key words: small RNA/ transcription/ antisense RNA/ EcoRI/ post-segregational killing/ transcriptional interference

Iwona Mruk^{1,2,#}, Yaoping Liu^{2,3,#}, Liying Ge² and Ichizo Kobayashi^{2,3,4*}

¹Department of Microbiology, University of Gdansk, Kladki 24, Gdansk, 80-822, Poland

²Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan

³Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan ⁴Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Japan

Primer	Oligonucleotide sequence $(5' \rightarrow 3')$	Used for
944f	AACGATATCTAGAGGTGCGTACAATTAAG	lacZ fusions, cloning
982f	AATCTAGAGACATATGTAAC	
1536f	TGCTCTAGATCCTTTTCTTAGAGGGGTCT	
1588f	AATATCTAGACCAGATGGAAGGG	
1588bf	AATATCTAGACCAGAGGGATGGGAAGTTAATCTTGA	G
1629f	ATTGATATCTAGAAAATAGGTTAGATCGAC	
1640r	ACCAGAATTATACTCAAG	
1662f	CTGTCTAGAATTATGGAATGCCTA	
1675f	CGGAATGTCTAGAAATAGTAATCTATGTA	
1692r	CTAAAGCTTGGATATCCATAATTAGCTGCA	
1731r	TTGTCTAGAAAGCTTACAAATTTGTTAATAC	
1800r	ATGAAGCTTGCATGCCACTCCCTCCCATC	
1801r	ATGTCTAGAGCATGCCACTCCCTCCCATC	
1892r	CGAATCTAGATCACTTAGATGTAAGCTG	

TABLE S1. Primers and probes

Mr	AAGC <u>TCTAGA</u> CGAAGCTAATGATCTC	pIMRM cloning
Rf	CGG <u>TCTAGA</u> GTG <u>GTCGAC</u> ACCATCTGGTTGC	
lacp	CGGGATCGATCACAGAAGAAGTAGT	primer extension
1128f	ATGCCCATGGTCTAGATCTCGCTGTTGGTG	northern blotting
1601r	CATACGATTTAGGTGACACTATAGAATACTGGT	CTTGTTATTGA
1536f	TGCTCTAGATCCTTTTCTTAGAGGGGTCT	
1748r	CATACGATTTAGGTGACACTATAGAATACTGCAT	IGCCAAATTTGTTAATACATAG
1536f	TGCTCTAGATCCTTTTCTTAGAGGGGTCT	RNase protection assay
1800r	ATGAAGCTTGCATGCCACTCCCTCCCATC	
1425f	TCCTCGTGCGGCCAAGAGGAGATCAAGATTTA	
1634r	CAGATCTAGACTAAAGATTAACAACCCTTC	
colef	GCGGTCGACATATGCGGTGCTACAGAGTTC	
coler	TGAGTCGACGATATCGTAGAAAAGATCAAAG	
loading control ATCTAGA	ATAAATGTGAGCGGATAACATTGACATTGTGAGCGGAT	AAC AAGATACTGAGCATG
PREV0-10mutf	TTGTAACCCGGGAAGACAAAAGCATTCTGCT	P _{REV0} substitutions
PREV0-10mutr	TTGTCTTCCCGGGTTACAAATTTGTTAATAC	
PREV0-35upmutf1	ACAAAAGCATTATGTGTCAAGCAGCATCTATAT	
PREV0-35upmutr1	TTGACACATAATGCTTTTGTCTTTATGA	
PREV0-35upmutf2	AAGCATTATGTTACAAGCAGCATCTATAT	
PREV0-35upmutr3	TGCTTGTAACATAATGCTTTTGTCTTTAT	
PREV0-35mutf	ACAAAAGCATTATGGGGCAAGCAGCATCTATAT	
PREV0-35mutr	TTGCCCCATAATGCTTTTGTCTTTATGA	
PREV0-35downmutf	ATTATGCTAGCCGCAGCATCTATATATAC	
PREV0-35downmutr	GATGCTGCGGCTAGCATAATGCTTTTGTC	
PM1/M2-10mutf	GCGGTCTGGTAAAGCAAATAGGTTAGATCGACT	AAC P _{M1,2} substitutions
PM1/M2-10mutr	ATTTGCTTTACCAGACCGCTACTCAAGATTAACA	AC
sRNAmutf	GCCCATCAACAGTAACCTATGTATTAACAAAT	making pIM24
sRNAmutr	TAGGTTACTGTTGATGGGCATTCCATAATTAG	

This was generated by RNAfold (<u>http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi</u>). The optimal RNA fold was generated with a minimum free energy of **-14.79** kcal/mol. Rna0 is indicated by a yellow line with its 5' and 3' end. Complementary sequences corresponding to -10 and -35 hexamers for promoters P_{M1} and P_{M2} are indicated by red lines. Two transcription start sites from P_{M1} and P_{M2} are marked by arrows.

Figure S2. Predicted secondary structure for the 5' end of mRNA for modification enzyme initiated from $P_{M1,M2}$ promoter.

Sequence complementary to the antisense RNA (Rna0) is in yellow, while those corresponding to -10 and -35 hexamers of its (reverse) promoter (P_{REV0}) are boxed. Initiation codon, ATG, for translation of the modification enzyme is underlined in red. Stop codon for translation of restriction endonuclease, UGA, is underlined in blue. This structure was generated by RNAfold (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi). The optimal RNA fold was generated with a minimum free energy of -63.20 kcal/mol. Bottom: a linear representation.