Supporting Information

Table S1. Summary of the MD simulations of alkali halide water mixtures: All simulations were performed at 300 K and 1atm in the NpT ensemble. Symbols are N_w , number of water molecules; N_s (= $N_+ = N_- = 1/2Nc$), number of alkali-halide pairs; V, average simulation volume; m_s , salt molality; C_s , salt molarity; ρ , mass density; E_{pot} , average total potential energy per molecule ($N_s + N_w$); and T_{sim} , total simulation time.

			m_s	V	C_s	ρ	E_{not}	T_{sim}
	N_s	N_w	(mol/Kg)	(nm^3)	(mol/l)	(g/cm^3)	(kJ/mol)	(ns)
H2O	0	2170	0.00	65.265	0.00	0.995	-46.45	2
NaF	20	2150	0.52	64.531	0.52	1.018	-54.94	6
	38	2079	1.01	64.519	1.03	1.040	-63.05	6
	38	2079	1.01	63.595	0.99	1.036	-60.07	6
N _o Cl	77	2048	2.09	63.829	2.00	1.077	-73.99	4
NaCI	115	1987	3.21	63.354	3.01	1.114	-88.00	4
	154	1950	4.38	63.783	4.01	1.149	-102.02	4
	38	2079	1.01	64.089	0.98	1.072	-59.62	5
	77	2048	2.09	64.810	1.97	1.148	-73.05	5
NoDr	115	1987	3.21	64.730	2.95	1.222	-86.59	9
INADI	154	1950	4.38	65.584	3.90	1.291	-100.08	5
	231	1730	7.41	63.426	6.05	1.438	-132.53	9
	308	1600	10.69	64.350	7.95	1.562	-163.90	9
	38	2079	1.01	65.051	0.97	1.101	-58.86	5
	77	2048	2.09	66.683	1.92	1.206	-71.52	5
Nat	115	1987	3.21	67.458	2.83	1.305	-84.27	5
INal	154	1950	4.38	69.151	3.70	1.398	-96.97	5
	231	1730	7.41	68.599	5.59	1.593	-127.35	5
	308	1600	10.69	71.253	7.18	1.748	-156.79	5
	127	7065	1.00	216.903	0.97	1.016	-62.37	6
LiCl	367	6796	3.00	217.842	2.80	1.052	-92.29	6
	589	6541	5.00	219.083	4.47	1.082	-120.13	6
	126	7002	1.00	216.178	0.97	1.041	-58.36	6
KCl	357	6603	3.00	215.924	2.75	1.120	-80.74	6
	561	6228	5.00	216.204	4.31	1.183	-101.56	6
	125	6963	1.00	216.055	0.96	1.080	-57.79	6
RbCl	352	6512	3.00	215.995	2.71	1.229	-79.14	6
	549	6093	5.00	216.324	4.22	1.352	-99.03	6
	125	6915	1.00	216.032	0.96	1.119	-57.38	6
CsCl	345	6385	3.00	215.737	2.66	1.333	-77.74	6
	533	5920	5.00	216.025	4.10	1.510	-96.76	6
KI	124	6880	1.00	217.183	0.95	1.105	-57.18	6
	340	6300	3.00	218.381	2.59	1.292	-77.20	6
	522	5796	5.00	219.331	3.95	1.447	-95.97	6
CsBr	124	6870	1.00	216.248	0.95	1.153	-56.93	6
	339	6275	3.00	216.377	2.60	1.422	-76.47	6
	519	5761	5.00	216.598	3.98	1.640	-94.77	6

Table S2. First shell coordination numbers (n_{ij}^{lst}) and second shell coordination numbers (n_{ij}^{2nd}) as a function of concentration (m) alkali halide aqueous solutions. $R_{max}^{lst}/R_{min}^{lst}$ and $R_{max}^{2nd}/R_{min}^{2nd}$ are the distances (nm) to the first and the second maximum/minimum of the radial distribution functions. Cations, anions, and the water oxygen are denoted by the symbols +, -, and o, respectively.

			. /	. /-	1-	- /-
	n İst	m	+/-	+/0	-/0	0/0
	R_{max}^{lst}		0.25	0.23	0.30	0.27
	R_{min}^{ISI}		0.326	0.310	0.364	0.342
	n. lst	0.5	0.06	5.54	7.01	4.80
NaE	ny	1.0	0.03	5.48	7.04	4.75
Ival	R_{max}^{2nd}		0.48	0.44	0.48	0.45
	R_{min}^{2nd}		0.562	0.540	0.592	0.564
	2nd	0.5	0.39	17.51	21.90	19.29
	n_{ij}	1.0	0.80	17.38	21.85	19.25
	R_{max}^{lst}		0.27	0.23	0.32	0.28
	R_{min}^{Ist}		0.355	0.315	0.405	0.345
		0.99	0.09	5.52	8.11	5.12
NaCl	lst	2.00	0.20	5.39	8.22	5.11
	n_{ij}	3.01	0.42	5 11	8 38	5.06
		4.01	0.57	4.93	8.45	5.00
	R^{-lst}		0.28	0.23	0.33	0.28
	$R \cdot Ist$		0.26	0.315	0.415	0.20
	<u> </u>	0.98	0.10	5.49	7 54	5.09
		1 97	0.10	5 34	7.54	6.57
NaBr		2.95	0.22	5.17	8.11	7.06
	n_{ij}^{lst}	2.95	0.50	J.17 4 07	8.61	7.00 8.11
		5.90	0.50	4.57	0.01	0.11
		0.05	0.90	4.55	9.00	0.72
	n İst	7.95	1.45	3.67	10.31	8.03
	R _{max} ^{lst}		0.29	0.23	0.35	0.28
	R_{min}	0 0 -	0.375	0.315	0.425	0.395
		0.97	0.07	5.48	7.91	5.04
NaI		1.92	0.16	5.40	7.98	6.42
1 (112	n. lst	2.83	0.26	5.24	8.04	6.83
	ny	3.70	0.39	5.05	8.59	7.18
		5.59	0.84	4.37	9.60	7.56
		7.18	1.31	3.66	10.80	6.79
	R_{max}^{Ist}		0.23	0.19	0.32	0.28
	R_{min}^{Ist}		0.315	0.265	0.398	0.360
		1	0.04	3.96	7.67	5.51
	n_{ij}^{lst}	3	0.12	3.88	7.80	5.40
1:01	U	5	0.22	3.78	7.91	5.25
LICI	R_{max}^{2nd}		0.46	0.41	0.50	0.45
	R_{min}^{2nd}		0.546	0.502	0.626	0.566
		1	0.61	14.16	25.07	18.59
	n_{ii}^{2nd}	3	1.48	13.29	24.32	17.29
	- IJ	5	2.26	12.46	23.36	16.27
	R_{max}^{lst}		0.31	0.26	0.32	0.28
	R_{min}^{Ist}		0.389	0.342	0.384	0.334
KCl		1	0.20	6.11	7.03	4.32
Ker	n_{i}^{lst}	3	0.54	5 77	6 79	4.03
	тŋ	5	0.89	5 39	6 4 8	3 74
		5	0.07	5.57	0.10	5.17

RbCl	R_{max}^{lst}		0.32	0.28	0.32	0.27
	R_{min}^{lst}		0.404	0.361	0.385	0.332
		1	0.24	6.75	7.03	4.23
	n_{ij}^{lst}	3	0.60	6.35	6.72	3.89
		5	0.95	5.95	6.32	3.57
	R_{max}^{lst}		0.34	0.29	0.32	0.27
	R_{min}^{lst}		0.428	0.376	0.385	0.334
CsCl		1	0.34	7.15	6.91	4.28
	n_{ij}^{lst}	3	0.78	6.63	6.48	3.92
	5	5	1.18	6.15	6.06	3.59
KI	R_{max}^{lst}		0.33	0.26	0.34	0.27
	R_{min}^{lst}		0.418	0.342	0.412	0.332
		1	0.24	6.02	7.34	4.20
	n_{ij}^{lst}	3	0.68	5.47	7.00	3.83
		5	1.10	4.96	6.61	3.51
CsBr	R_{max}^{lst}		0.34	0.29	0.33	0.27
	R_{min}^{lst}		0.438	0.380	0.394	0.332
		1	0.39	7.18	6.90	4.19
	n_{ii}^{lst}	3	0.93	6.47	6.34	3.81
	2	5	1.38	5.88	5.85	3.49

		a_1	a_2	a_3	a_4	m _s ^{max}
NaF	Exp	1.2759	-0.0410	0	0	1.0
	KBFF	1.2759	0.1757	0	0	1.0
NaCl	Exp	1.3360	0.0810	0	0	6.0
	KBFF	1.3360	0.0827	0	0	5.0
NaBr	Exp	1.4360	0.1041	0	0	4.0
	KBFF	1.4360	0	0.3342	0.0263	5.0
NaI	Exp	1.6350	0.1300	0	0	3.5
	KBFF	1.6350	0	0.4308	0.0133	5.0
LiCl	Exp	1.4644	0	0.2110	0.0102	6.0
	KBFF	1.4644	0	-0.2430	0.0086	5.0
KCl	Exp	1.1720	0.0360	0	0	5.0
	KBFF	1.1720	0.0260	0	0	5.0
RbCl	Exp	1.0643	0.0311	0	0	5.0
	KBFF	1.0643	0.0482	0	0	5.0
CsCl	Exp	0.8402	0.0311	0	0	6.0
	KBFF	0.8402	0.0398	0	0	5.0
KI	Exp	1.4259	0.0480	0	0	4.5
	KBFF					N/A
CsBr	Exp	0.8453	0.0216	0	0	5.0
	KBFF					N/A

Table S3. Fitting constants for Equation 4 determined by fitting experimental alkali halide activity coefficients and the corresponding simulated activity derivatives.

Expermental data was fitted to Equation 4

$$\ln \gamma_{\pm} = \frac{-1.178\sqrt{m_s}}{1 + a_1\sqrt{m_s}} - \ln(1 - a_2m_s) + a_3m_s + a_4m_s^2$$

Simulated data was fitted using the following activity coefficient derivative,

$$\left(\frac{\partial \ln \gamma_{\pm}}{\partial \ln m_s}\right)_{T,P} = \frac{-N_{22}^+}{1+N_{22}^+} \qquad \qquad N_{22}^+ = N_{22} + m_2(1+N_{11}-2N_{21})$$

which can be then be expressed in terms of the derivative of Equation 4. The fits should be considered approximate due to the relatively low number of points used (typically three). The simulated data for KI and CsBr could not be fitted accurately using the above relationships.

	Exp	Hagler FF	KBFF
NaF	895.4	937.2	1217.7
NaCl	765.7	786.6	808.2
NaBr	728.0	744.8	776.1
NaI	682.0	698.7	751.0
LiCl	832.6	861.9	1178.0
KCl	694.5	711.3	725.3
RbCl	665.3	686.2	692.7
CsCl	648.5	644.3	650.1
KI	627.6	636.0.	663.2
CsBr	627.6	615.0	628.8

Table S4. Lattice energies (kJ/mol) for alkali halide crystals.

Exp: Experimental data taken from (Tosi, M. P.; Fumi, F. G. *J Phys Chem Solids* 1964, *25*, 45) Hagler FF: Hagler force field data taken from (Peng, Z. W.; Ewig, C. S.; Hwang, M. J.; Waldman, M.; Hagler, A. T. *J Phys Chem A* 1997, *101*, 7243)

Figure S1. Radial distribution functions of NaF obtained from the 0.5 m (black lines) and 1 m (red lines) simulations. Cations, and the water oxygen are denoted by the symbols +, -, and o, respectively.

Figure S2. Radial distribution functions of NaCl obtained from the 0.99 m (black lines) and 4.01 m (red lines) simulations. Cations, anions, and the water oxygen are denoted by the symbols +, -, and o, respectively.

Figure S3. Radial distribution functions of NaBr obtained from the 0.98 m (black lines), 2.95 m (red lines), and 6.05 m (green lines) simulations. Cations, anions, and the water oxygen are denoted by the symbols +, -, and o, respectively.

Figure S4. Radial distribution functions of NaI obtained from the 0.97 m (black lines), 2.83 m (red lines), and 5.59 m (green lines) simulations. Cations, anions, and the water oxygen are denoted by the symbols +, -, and o, respectively.

Figure S5. Radial distribution functions of LiCl obtained from the 1 m (black lines), 3 m (red lines), and 5 m (green lines) simulations. Cations, and the water oxygen are denoted by the symbols +, -, and o, respectively.

Figure S6. Radial distribution functions of KCl obtained from the 1 m (black lines), 3 m (red lines), and 5 m (green lines) simulations. Cations, and the water oxygen are denoted by the symbols +, -, and o, respectively.

Figure S7. Radial distribution functions of RbCl obtained from the 1 m (black lines), 3 m (red lines), and 5 m (green lines) simulations. Cations, anions, and the water oxygen are denoted by the symbols +, -, and o, respectively.

Figure S8. Radial distribution functions of CsCl obtained from the 1 m (black lines), 3 m (red lines), and 5 m (green lines) simulations. Cations, and the water oxygen are denoted by the symbols +, -, and o, respectively.

Figure S9. Radial distribution functions of KI obtained from the 1 m (black lines), 3 m (red lines), and 5 m (green lines) simulations. Cations, anions, and the water oxygen are denoted by the symbols +, -, and o, respectively.

Figure S10. Radial distribution functions of CsBr obtained from the 1 m (black lines), 3 m (red lines), and 5 m (green lines) simulations. Cations, and the water oxygen are denoted by the symbols +, -, and o, respectively.