Database*	$+ + LEF^{\dagger}$		LEF^{\dagger}		LEF^{\dagger}		$-P LEF^{\dagger}$	
	O_{++LEF} §	\mathbf{E}_{++LEF} ¶	O_{LEF} §	\mathbf{E}_{LEF} ¶	O _{LEF} §	\mathbb{E}_{LEF} ¶	O_PLEF §	E_{-PLEF} ¶
Nonredundant (NR)	1,055	571.86	763	613.43	873	613.43	248	232.69
TrEMBL (Tr)	1,206	613.08	877	722.01	1,026	722.01	292	273.87
Swiss-Prot and TrEMBL (SP +Tr)	1,032	551.14	732	591.20	854	591.20	245	224.26
Swiss-Prot (SP)	117	97.932	145	105.05	175	105.05	56	39.848
$\mathbf{P}_{LEFXX}\left(P_{XXLEF} ight)^{\ddagger}$	3.812e ⁻⁶		$4.089e^{-6}$		$4.089e^{-6}$		1.551e ⁻⁶	
Mean difference	393.947		121.327		224.077		17.583	
$df^{ }$	3		3		3		3	
t value	3.0858		4.447		4.2795		14.563	
t probability $^{ }$	0.05389		0.02115		0.02344		0.00070	

Table 11. Expected vs. actual frequency of the three-residue amyloidogenic motif LEF surrounded by amyloid breakers in protein sequences

*Motif database scanning has been carried out by using PATTINPROT (1).

[†]Only motifs where the difference between the number of observed and expected hits is statistically significant at a confidence level $\geq 5\%$.

^{*}Motif probabilities have been calculated as the product of the expected individual amino acid frequencies (see *Methods* in the main text).

 $O_{LEFXX}(O_{XXLEF})$ is the number of hits of an amyloid breaker motif that have been found on the database.

^{II} E_{LEFXX} (E_{XXLEF}) is the expected number of hits of a given amyloid breaker motif based on the average composition of proteins (see *Methods* in the main text) and the total number of LEF hits found in database [O_{LEF} (NR) = 45,588; O_{LEF} (Tr) = 53,657; O_{LEF} (SP + Tr) = 43,936; O_{LEF} (SP) = 7,807]. ^{II}Student's test of significance.

1. Combet, C., Blanchet, C., Geourjon, C. & Deleage, G. (2000) Trends Biochem. Sci. 25, 147-150.