Supporting Text

Autocorrelation and Partial Autocorrelation Functions. The lag-/

autocorrelation 7, of a time series {y; }7, is

Xt (Ve —9) (Y0 —T7)
Ty =

0</<n-—1
Etnzl (yt—y)2 -

where 7 = (312, y:) /n. The 5% significance level, o(k), of the kth autocorrelation in

{r¢}3%, is computed as v

o(k)=2- l<1 +2-§r§) /n]lﬂ

The lag-¢ partial autocorrelation of an observed series {y;}7_; is related to ¢, in

the order-¢ autoregressive model fit to the data by linear regression:

Y = Gro + Ge1Ye—1 + -+ PuYr—o + €

Thus, ¢, significantly different from zero suggests that an order-¢ autoregressive model
may be recommended. The partial autocorrelation p, may be computed from the
sequence 1 of previously computed autocorrelations by letting p;; =71, v1 = 1 — 7% and

iteratively solving for k =1,---¢ — 1

Pe+1k+1 — (Tk+1 — PkaTk — Pg2Tk—1 — ' — Pk,kﬁ) /Uk
Dk+1,j = Dhkyj — Ph+1k+1Pk+1k+1—j> j=1,---k
_ 1— 2
Vk+1 = Uk Prt1k+1

Then py = pge. The 5% significance level of the kth partial autocorrelation is 2/4/n. The

lag-1 autocorrelation and lag-1 partial autocorrelation are equal.



Parameter estimation. For a given set of macroevolutionary data, yi, y2, - - -, Yn, the

parameters of equations

Y = PY1+ e 1]
Yo = G0t pPaYt1t € (2]
Yo = bo+bi(t—n/2)+ ppys—1 + €, 3]

are estimated by linear regression as follows (1).

Define n — 1 dimensional vectors

1 1—n/2 Y2 U1
1 2—n/2

1=|.]  t= " Yo=| | ve=| ¥
1 n—1-—n/2 Yn Yn—1

Define the matrices
U1 - [Yt—l] U2 - [1 Yt—l] U3 - [1 t Yt—l]-

Using three independent linear regressions, the parameters of Egs. 1-3 are

estimated to be

[ p } = (U1'U1 )_1 Ullthl

ZP = (U'Uy) ' Uy Yy
- 80 —
by | = (Us'Us)™ Ug' Yy
e

The transpose and inverse of a matrix A are denoted by A’ and A !, respectively, and
we denote the matrix (Uy' Uy )™ by cg.

The residual mean squares of the three previous regressions are, respectively,

Sh=m—-1-k)7"[Y; (I- U (UU) ' UY) Y, | [4]



for kK =1,2, and 3. The SE, S, ;, of a parameter, z, estimated in one of the previous
regressions is (5S¢ (4, i))l/ ? where k is the number of the equation in which z appears
and ¢ is the index of x within the regression vector for that equation.

Regression ¢ statistics for the conditions do # 0, by # 0, and by # 0 are
t:fc = i/se,w [5]

where z is ag, by, or b;. Regression t statistics for the hypotheses p=1, p, = 1, or

pp = 1, depending on which of the Egs. 1-3 has been selected, are
tp=(2—1)/Se (6]

where x is p, pg, O Pp.
Modifications by Phillips and Perron. Dickey and Fuller (1,2) analyzed the
regression ¢ statistics in Eqs. 5 and 6 for time series data. They assumed in their
analysis that the innovations {¢;} are normal, independent and of constant variance o2,
Phillips (3) and Phillips and Perron (4) greatly relaxed this assumption about {¢;} and
allowed a weak dependence between the members of {¢;} and slowly changing variance
o?. They defined a modified ¢ statistic, Z(t;), which has the same limiting distribution
as tz. A summary of the equations defining the ¢ statistics Z(¢;) follows.

Phillips (3) Phillips and Perron (4) allowed innovations, €;, satisfying the following

conditions (E denotes expected value):
1. E(e) =0
2. sup, E(]&;|?*) < oo for some 8 < 2 and 7 > 0.
3. Asn — o0, 0? =lim E(n~'5?) exists and 0% > 0, where S, = ¢; + - - + €.

4. {e} is strong mixing with mixing coefficients a,, that satisfy >%°_, a2/ < co.



These conditions insure the existence of

= lim Z ) (7]

n—oo n

The Phillips and Perron (4) conditions 1-4 greatly expand the collection of time
series that may be considered over those for which the innovations ¢; are normal,
independent, and of constant variance, and the reader is referred to their paper for
discussions of the conditions. They refer to Hall and Heyde (5) for discussion of strong
mixing and mixing coefficients.

Phillips and Perron (4) define the parameter
1
A= 5(02 —d?)

With the Dickey and Fuller (1,2) hypothesis that the ¢, are independent random
variables with mean zero and constant variance, that constant variance is o2 and also is
o2, so that A = 0.

Phillips and Perron (4) estimate o2 to be the SE of the regressions, S?, S%, or SZ,
corresponding to the model 1, 2, or 3 that is being fitted.

They estimate 0 by S7, ; = 0* where

— k s n—1
=0 w2 -1y (1-50) S w9,
t=1 s=1 t=s+1

n is the length of the time series, and u;(t) is the residual of the regression:

w(t) = Yrs1 — PYe, Ua(t) = Yor1 — o — Paye and uz(t) = yers — bo — bi(t —n/2) — poys.
The selection of £ in Zle is left to the user. Phillips and Perron (4), p 343, suggest
that for series of length 100, £ = 8 is appropriate. The Phanerozoic time series that we
analyze are of lengths 90 or 108, and we have used k = 8.

Some additional parameters are defined, with > = >} ;.

Myy = n_2 Z th Y= n_l Z Yt myy = ’I'L_2 Z (yt - g)Q



m, = n=3/2 z n My = n—25 Ztyt

1 , 1 6 2\
Noo= Ni/Si; j=1,2,3

The equation for Z(t¢;) is based on Phillips (3), Eq 22. The remaining equations

are from Phillips and Perron (4).

Z(tdo) = (SeZ/Snk,Q) t@o + )‘IQSnk,me [myy myy]_1/2

—-1/2

Z(tbAO) == (583/871,]6},3) ti)O — /\gSnk,?,my [M(M + m;)]

1 _
Z(t;,) = (Ses/Su3)ts, — A3Suk <§my - mty) [Ty M/12]772

Z(t;) = (Ser/Sur) tp — NiSukyr (myy) ™2
Z(ts,) = (Sea/Suk2)ts — NoSukz (M) ~*

Z(tﬁb) = (Se3/Snk,3) lpa — )‘gsnkﬁ M2

Under the Dickey and Fuller hypothesis (1,2) that ¢, be of constant variance, then
Z(t3) =tz because Sg; = Spyj, A; = 0 and therefore X; = 0 for j =1,2,3.
Analysis of estimated Phanerozoic CO, levels. We illustrate the previous

methods using the time series of estimates of Phanerozoic COs levels (6) which was



shown (7) to be significantly correlated with Sepkoski’s fractional origination rates (8,9).
The CO, estimates are evenly spaced at 10-Myr intervals based on a time scale in which
the Cambrian began 570 mya. The time series has 58 numbers and to compare with
Sepkoski’s data (8,9) we have linearly rescaled the time scale to 545-0 mya. Time series
of length 58 are short for random walk analysis, but within this limitation we will find
that the null hypothesis that the time series is a random walk is not rejected. Analysis
of windows of &~ 450 Myr shows that the time series in the early windows is a random
walk and in the more recent windows the time series is not a random walk.

The Phanerozoic CO, estimates are presented (Fig. 3) as RCOy, the ratio of the
estimate of partial pressure of CO, at a time in the past to the partial pressure of CO,
today. Autocorrelation and partial autocorrelation functions for RCO, (Fig. 4) show
that none of the partial autocorrelations beyond that of lag-1 are significantly different
from zero, suggesting that a first-order autoregressive time series may model the data.

The tables and graphs of the printed article all show values of Z(t¢;) for z = b; and
Py, a1 and p,, or p, depending on the model being used. For a fit of the linear drift
model (Eq. 3) to the RCO, time series, b, = —0.0533, Z(t;,) = —2.18, pp = 0.8587 and
Z(tp,) = —2.54. From Table III of Dickey and Fuller (2) with our sample size of 58, in
order for by to be (90 %) significantly different from zero we should have ‘Z (t;)l)‘ > 2.38.
With ‘Z(ti)l)‘ = 2.18 we do not accept the linear drift model.

For a fit of the constant drift model (Eq. 2) to the RCO, time series, o = 0.1731,
Z(ta,) = 0.4586, p, = 0.9585 and Z(t;,) = —1.06. From Table III of Dickey and Fuller
(2) for ay to be (90 %) significantly different from zero Z(¢;,) should be greater than
2.75, and we do not accept the constant drift model.

For a fit of the no drift model (Eq. 1) to the RCO, time series, p = 0.9708 and
Z(t;) = —1.14. From Table 8.5.2 of Fuller (10) we see that for j to be (90 %)

significantly different from 1, Z(¢;) should be less than -1.95 or greater than 1.31. With



Z(t;) = —1.14 we do not reject null hypothesis that that the Phanerozoic RCO, time
series is a random walk.

Windows of width 48 of the RCO, time series (approximately 450 Myr) were
analyzed individually. The linear and constant drift models were not accepted in any
window. The values of Z(t;) plotted at the last times of the windows is shown in Fig. 5
where it can be seen that the random walk null hypothesis is not rejected in the early
windows but is rejected in the more recent windows.

Models in Deviation Form. Dickey (personal communication) suggested that we use
autoregressive models in deviation form so that the no-drift, constant-drift, and

linear-drift equations would be written as

Yo = PYi—1 T € 8]
Ye—ay = pa(Ye—1—ao) + € 9]
yt_bO_bl (t—n/2) = ,Ob(yt,1 —bo—bl(t—l—n/Q))-i-Gt [10]

The no-drift form, Eq. 8, is the same as the standard no-drift form, Eq. 1. The
parameters of these models are fit by linear regression as with the previous forms. Thus,

the linear drift model is to be written

yr = (1= p)bo + pb1 + (1 — p)bi(t —n/2) + pyr-1 + &

The parameters are determined by linear regression as above except now the constant
term is (1 — p)by + pby and the coefficient of t —n/2 is (1 — p)by. A curious form arises in
the case of p =1 in which we have interest. The coefficient of ¢ — n/2 in this
autoregression is zero and the model is the constant drift model of Eq. 2 (with constant
term b; instead of a). If that constant term is significantly different from zero it is by,
the coefficient of ¢ — n/2 in the deviations linear drift model, Eq. 10. In light of this,
Dickey suggested that we use the linear-drift model in all of our analysis. The estimates

of p are the same whether using Eq. 3 or Eq. 10.



If we use the linear drift model we find that for total diversity, p = 1.0131,

Z(tp) = 1.18; for accumulated origination, p = 1.0451, Z(t¢;) = 0.18; and for

accumulated extinction, p = 0.9572, Z(t;) = —2.06. From Table 8.5.2 of (10), we see

that in order for p to be significantly different from 1, Z(¢;) should be less than -3.45 or

greater than -0.90. We conlude that total diversity and accumulated origination are not

random walks over the Phanerozoic, but that accumulated extinction is a random walk

throughout the Phanerozoic. The graphs of Z(t;,) for windows of width 90 analogous to

those of Figure 2 in the main text appear in Fig. 6 A-C. It will be seen that the

conclusions are the same as in Figure 2 of the main text: diversity and accumulated

origination are random walks in the early windows and are not random walks in the

recent windows; accumulated extinction is a random walk in all windows.
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