
Supporting Text

Ours is a large-scale neuronal network model of a small, 1-mm2, patch of layer 4Cα of the
macaque primary visual cortex.  This network consists of ≈  4,000 integrate-and-fire (I&F),
conductance-based point neurons, representing cells within four orientation hypercolumns. The
basis of the detailed model is a system of coupled excitatory (E) and inhibitory (I) I&F point
neurons, whose intracellular potentials, vσ

j (σ = E or I; j = (j1, j2) indexes spatial location), follow
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Here C is the capacitance, Lg  is the leak conductance, ( )j

Eg tσ  and ( )j

Ig tσ  are the time-dependent
excitatory and inhibitory conductances, respectively, and LV  and /E IV  are the respective reversal
potentials. In I&F dynamics, Eq. 1 generates spikes times, i.e., the times at which j

Tv Vσ = , after
which jvσ  is reinitialized to and held at reset R TV V<  for an absolute refractory period (of refτ  =
2 and 1 ms for excitatory and inhibitory neurons, respectively). After neuron spikes, conductance
changes are induced throughout the network.  For time stepping, we use a modified fourth-order
Runge-Kutta method (1) with 0.1-ms time steps.

We use commonly accepted values for the biophysical parameters 6 210 F cmC − −= ⋅ ,
6 1 250 10 cmLg − − −= × Ω ⋅ , 70mVLV = − , 0mVEV =  and 80mVIV = − , set the spike threshold at

55mVTV = − , take R LV V=  and use the difference between the threshold and the reset to
normalize the membrane potential.  Choosing 1TV =  and 0RV =  sets the reversal potentials at

4.67EV =  and 0.67IV = − .  Only time retains dimension.

This model is faithful to neurophysiological data. The crucial features of the model are that the
local lateral connectivities, as set by the specification of the coupling kernels (see below), are
nonspecific and isotropic (in contrast to very specific phase- or orientation-specific architectures,
as in refs. 2 and 3, and that lateral monosynaptic inhibition acts at shorter length scales than
excitation, both of whose length scales are shorter than that of a single orientation hypercolumn
(4-7).  The orientation and spatial phase preferences of individual V1 neurons are set by the
construction of the total LGN forcing resulting from the summed output of segregated sets of on-
and off-center LGN cells (see Fig. 1) (8).  In the model cortex, orientation preference is laid out
in pinwheel patterns, and preferred spatial phase varies randomly from neuron to neuron. The
former is consistent with the optical imaging experiments of refs. 9-12 and the latter consistent
with multiunit recordings of ref. 13.

In Eq. 1, the time-dependent conductances arise from input from retina (via the LGN), network
activity of E and I populations, and sources external to the layer.  By definition, EEg  is the
conductance produced by excitatory synapses onto excitatory neurons, IEg  is the excitatory
conductance produced in an inhibitory neuron, etc. Excitatory conductances have the form:
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Here ( ) ( ) ( )0
lgn
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EF t f t f t= +  is the external forcing to the layer and is comprised of postsynaptic

conductance changes (PSC) induced by activity in the LGN and external to layer 4Cα,
respectively. Note that expressions for ( )j

Ig tσ  are similar, except that they have no LGN

contributions. The function ( )E spG t t−  models the time course of PSCs in response to a

presynaptic action potential generated at spt . We model each PSC by α-like functions:
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Here ( )tθ  is the Heaviside function (θ  = 1 for t > 0 and θ = 0 otherwise). We set στ  = 1 and
1.67 ms for α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and γ–
aminobutyric acid type A (GABAA) time courses (giving the times-to-peak at 3 and 5 ms). For
cortico-cortical coupling, we also include N-methyl-D-aspartate (NMDA) (14) and a second,
longer, inhibitory time course (B. Connors, personal communication).  NMDA is modeled as a
difference of exponentials, 
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 with 1τ  = 80 ms and 2τ  = 2 ms. The slow inhibition is in

the form above (Eq. 3) with a time constant of 7 ms.  In all cases where we include slow
excitation and inhibition, the strength of the slow components is taken to be equal to the fast
components integrated over time. The time integral of each PSC is always normalized to one.

For the jth V1 neuron, the LGN conductances are 
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where we first sum over all LGN cells that provide feedforward input, and then we sum over the
spike times of each LGN neuron.  The spike times, k

ls , are given by inhomogeneous Poisson
processes, whose rates ( )kR t  are modeled by linear, thresholded, spatio-temporal filters of the

visual stimulus ( ),I x s
v

:
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Here kR+  and kR−  represent the rate of an on- and an off-center LGN neuron; kx
v

 denotes the

receptive field center of the kth LGN neuron; [ ]+
K  represents rate rectification; and BR  = 20



spikes/sec is the spontaneous firing rate of individual LGN neurons.  The spatial kernel, ( )A x
r

, is

a difference of Gaussians and the response function ( )G t  is taken from ref. 15. (For further
details, see ref. 16.) The conductances induced by each LGN “action potential” are mediated by
cortical AMPA receptors only (14) and the strength of each PSC is normalized to Ec  = 0.05.  
For contrast reversal,
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with parameters 0I  (intensity), ε  (contrast), ω  (temporal frequency), and ϕ  (spatial phase).

The spatial frequency wave vector of the grating, ( )cos ,sink k θ θ=
v

, has spatial frequency k
and orientation θ . For drifting grating,
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We arrange uniformly 1,024 on-centered and 1,024 off-centered LGN cells to provide input to
our numerical cortex. For each V1 neuron, the spatial arrangement of the set of impinging LGN
cells is consistent with a Gabor receptive field (8), with on and off subregions created by
afferents from on- and off-centered LGN cells. This confers both orientation and spatial phase
preference.  In the model cortex, the orientation preference is laid out in pinwheel patterns, while
the spatial phase preference is distributed randomly. We use NLGN to denote the number of input
LGN cells of each V1 neuron, and make two assumptions about NLGN: (i) The number
distribution of NLGN is uniform between NLGN = 0 and 30 and (ii) NLGN is randomly distributed in
cortical coordinates. To construct the connectivity between the LGN cells and the cortical
neurons we first determine NLGN, a orientation preference and a spatial phase preference for each
V1 neuron. Then the connections are “generated” probabilistically (using Gabor functions with
the proper orientation and phase preferences) by sampling LGN on- and off-centered LGN cells
located near the receptive field centers of each V1 neuron. (See Fig. 1 for schematic.)

The last term in Eq. 2 describes conductances induced by network activity: k
lt  is the time of the

l th spike of the k th excitatory neuron.  The kernels E
j kKσ
−  represent the pattern of spatial

coupling between neurons, and we take these kernels to be Gaussians with length scales of 200
µm for excitation and 100 µm for inhibition.  The length scales are consistent with anatomical
studies (4-7). We normalize all kernels to have integral one so the parameters ESσ  represent
synaptic coupling strengths.

We make two assumptions about the strengths of the excitatory synaptic coupling ESσ .  We
assume that those cells with fewer LGN afferents have more of their excitatory synapses taken
up by cortico-cortical excitatory connections. Therefore, we assume that each neuron's ESσ  is
inversely proportional to its NLGN. Specifically, we set the matrix of coupling strengths
( ), , ,EE EI IE IIS S S S  = (1.0, 3.0, 5.0, 3.0) for those cells with NLGN = 30 and ( ), , ,EE EI IE IIS S S S  =
(6.0, 3.0, 7.0, 3.0) for those cells with NLGN = 0.  For the intermediate populations, the S matrix is



a linear interpolation between the two extremes of the distribution. Additionally, to reproduce
qualitatively the diversity of the driven and spontaneous firing rates observed in V1, we allow for
further heterogeneity in all synaptic coupling strengths 'Sσσ .  For each population of neurons
grouped by the same NLGN, the distribution of coupling strengths is Gaussian with a standard
deviation that is a tenth of the mean coupling strength.

Finally, to model the effects of conductance changes induced by activity in other layers of V1,
we add inputs by using spike times given by inhomogeneous Poisson spike trains, that is, 
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(the form of 0 ( )If tσ  is similar). We model each spike train by using firing rates that are
proportional to the mean firing rate of layer 4Cα itself. These random inputs represent inputs to
layer 4C from other sources of excitation or inhibition and could be interpreted, for instance, as a
long-range coupling to layer 6 neurons (5).  The activity-dependent feature of this input captures
the expectation that the total PSCs induced by external activity are also elevated by stimulation.
As we have assumed for the intra 4Cα coupling strengths SσE (i.e., inversely proportional to
NLGN), we also assume that the extra 4Cα excitatory couplings are inversely proportional to the
strength of the LGN input.  To close the system of model equations, here are the S' matrices for
the NLGN = 30 and 0 populations, respectively: S' = (0.0, 0.4, 0.0, 0.4) and (0.1, 0.4, 0.1, 0.4).
Again, we linearly interpolate the strengths for the intermediate population.  Furthermore, as we
have done for the intra-4Cα couplings, we allow for randomness in the couplings by sampling
with Gaussians with standard deviations that are a tenth of the mean coupling strengths.
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