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This supplementary material presents the proofs of the mathematical results presented in the main text.

Example environmental state decomposition:

The discrepancy between a static decomposition (cf. Eq. 3 of the main text) and intrinsic and extrinsic
noise contributions in dynamical systems is illustrated by the example reaction scheme 4 (main text).
Making use of the fact that P (z) follows a Poisson distribution satisfying P (z+1) = P (z)×λz/(βz(z+1))
we can derive the following recurrence relation for 〈x|z〉 =

∑
x xP (x, z)/P (z) from the master equation

λxz = βx〈x|z〉 − βzz (〈x|z − 1〉 − 〈x|z〉)− λz (〈x|z + 1〉 − 〈x|z〉) .

Substitution verifies that this equation has a simple solution of the form 〈x|z〉 = A+Bz and we find

〈x|z〉 = βx
βx + βz

(
λxλz
βxβx

+
λx
βx
z

)
,

which also satisfies the additional conditions that determine the solution to a second order recurrence
relation:

∑
x〈x|z〉P (z) = 〈x〉 and 〈x|0〉 = 〈x|1〉λz/(λz + βx) (from evaluating the master equation at the

z = 0 edge). Averaging over the extrinsic distribution then leads to

〈〈x|Z〉2〉 ≡
∑
z

〈x|z〉2P (z) = 〈x〉2
(
1 +

1

〈z〉
τz

τx + τz

)
,

and the result of Eq. 6 (main text) for 〈σ2
X|Z〉 = 〈〈x|Z〉

2〉 − 〈〈x|Z〉〉2 follows.

Periodically changing environments:

Introducing conditional averages for a given environmental time trace Z[0, t∗] that ends at a specific
phase t∗, and then averaging over all phases t∗ allows us to re-write the conditional averages in Eq. 9
(main text): 〈〈Xt|Z[0, t]〉〉Z[0,t] = 〈〈〈Xt|Z[0, t∗]〉〉Z[0,t∗]〉t∗ where the subscripts denote the variable we
average over. Using those conditional averages and making use of 〈〈Xt|Z[0, t∗]〉〉Z[0,t∗] = 〈Xt|t∗〉 we
can apply the law of total variance to the extrinsic noise

σ2
ext = 〈 〈〈Xt|Z[0, t∗]〉2〉Z[0,t∗] − 〈〈Xt|Z[0, t∗]〉〉2Z[0,t∗]︸ ︷︷ ︸

σ2
ext(t
∗)

〉t∗

+ 〈〈〈Xt|Z[0, t∗]〉〉2Z[0,t∗]〉t∗ − 〈〈〈Xt|Z[0, t∗]〉〉Z[0,t∗]〉2t∗︸ ︷︷ ︸
σ2
〈Xt∗ |t

∗〉

,
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and the result of Eq. 9 (main text) follows. Because the two reporters are independent when conditioned
on an environmental history Z[0, t∗] we furthermore have

σ2
ext(t

∗) = 〈〈XtYt|Z[0, t∗]〉〉Z[0,t∗] − 〈〈Xt|Z[0, t∗]〉〉2Z[0,t∗]

= 〈XtYt|t∗〉 − 〈Xt|t∗〉〈Yt|t∗〉︸ ︷︷ ︸
Covsync(x,y;t∗)

.

Modeling intrinsic noise – additive environments:

By considering
∑

x,y x
2dP/dt we find that for intrinsically linear systems the time evolution of the condi-

tional covariance matrix Cij ≡ 〈Xi,tXj,t|Z[0, t]〉 − 〈Xi,t|Z[0, t]〉〈Xj,t|Z[0, t]〉 follows

dC

dt
= JC + (JC)T +B ,

with Jacobian Jij =
∑
k skidrk/dxj and diffusion matrix Bij =

∑
k rk(〈Xt|Z[0, t]〉, z(t))skiskj . For sys-

tems subject to additive environmental influences the Jacobian matrix is constant, which means that
by taking time averages we obtain an equation for the covariance matrix: 0 = J〈C〉 + (J〈C〉)T + 〈B〉.
Replacing the fluctuating rate constants of the original system with their averages leads to a system with
a constant diffusion matrix given by 〈B〉 while leaving the Jacobian unchanged. Its covariance matrix
therefore satisfies the same equation as C. Thus the intrinsic noise σ2

int ≡ 〈Cnn〉 can indeed be mod-
eled by replacing fluctuating rates with their averages and thereby eliminating the extrinsic variability
from systems linear in intrinsic variables and subject to additive environmental noise.

Modeling intrinsic noise – multiplicative environments:

For the system described in reaction scheme 11 (main text) the conditional average and the conditional
variance follow

d〈Xt|Z[0, t]〉
dt

= λ(z(t))− β(z(t))〈Xt|Z[0, t]〉

dσ2
Xt|Z[0,t]

dt
= λ(z(t)) + β(z(t))〈Xt|Z[0, t]〉 − 2β(z(t))σ2

Xt|Z[0,t] .

Substituting the ansatz f(t) = σ2
Xt|Z[0,t] − 〈Xt|Z[0, t]〉 we obtain df/dt = −2β(z(t))f and therefore

f(t) ∼ exp[−2
∫
β(z(t))dt] which tends to zero as t→∞. Hence the time averages satisfy 〈σ2

Xt|Z[0,t]〉 =
〈〈Xt|Z[0, t]〉〉. Replacing β(z) with the constant 〈β(z)x〉/〈x〉 and replacing λ(z) with 〈λ(z)〉 removes the
effect of environmental variability while preserving the system average. This process thus eliminates the
influence of environmental variability while leading to a system whose fluctuations model the intrinsic
noise.
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