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SI Results and Discussion
The structure factor SðqÞ is often employed to characterize the
structure of a suspension because it is directly accessible in scat-
tering experiments. For a static system in three dimensions, SðqÞ
is defined as

SðqÞ ¼ 1

N ∑
N

j;k¼1

hexp½iq · ðrj − rkÞ�i

¼ 1þ ρ0

Z
Vd

d3r expðiq · rÞ½gðrÞ − 1�; [S1]

where q is the scattering vector, r is a particle position, N is the
total number of particles, gðrÞ − 1 is the normalized pair correla-
tion function, and ρ0 is the particle density in the volume Vd.

The calculation of the structure factor in a particular direction
(x, y, or z) shows no directional structure within the RBC suspen-
sion for various shear rates in agreement with the directional pair
correlation function mentioned in the paper. The existence of lo-
cal microstructure within the suspension can be checked through
the isotropic structure factor SðqÞ, which can be calculated as

SðqÞ ¼ 1

N ∑
N

j;k¼1

�
sinðqrjkÞ
qrjk

�
; [S2]

where q ¼ jqj and rjk ¼ jrj − rkj. Analogously, SðqÞ in Eq. S1 can
be integrated (averaged) over an orientational angle to obtain

SðqÞ ¼ 1þ 4πρ0
q

Z
∞

0

½gðrÞ − 1�r sinðqrÞdr; [S3]

where gðrÞ is the radial distribution function. Fig. S1 presents the
isotropic structure factor SðqÞ for different shear rates and aggre-
gation conditions calculated from simulation data using Eq. S2.
We also verified that Eq. S3 provides the same results using the
radial distribution functions shown in Fig. 4A of the paper. For a
comparison, if we look at the aggregating case with shear rate
_γ ¼ 0.045 s−1 (dashed red curve), we notice that the last peak
in SðqÞ at q ¼ 2.7 μm−1 corresponds to the peak in gðrÞ at
r ¼ 2π∕q ¼ 2.33 μm (dashed red curve in Fig. 4A of the paper),
which characterizes two-cell aggregates present separately or
within larger aggregate structures. Analogously, we can relate
other peaks of SðqÞ curves to the corresponding peaks in gðrÞ
for various shear rates and aggregating conditions. The simula-
tion data show that these two microstructure characterization ap-
proaches are equivalent, which is expected because SðqÞ is simply
the Fourier transform of gðrÞ − 1.

Methods
We first briefly review the simulation method, the multiscale
RBC (MS-RBC), and the low-dimensional RBC (LD-RBC)
models, including the aggregation models. Then, we present de-
tails on the scaling from model units to physical units.

Dissipative Particle Dynamics.Dissipative particle dynamics (DPD)
(1, 2) is a mesoscopic particle method, where each particle repre-
sents a molecular cluster rather than an individual atom, and can
be thought of as a soft lump of fluid. The DPD system consists of
N point particles, which interact through soft pairwise forces. The
DPD system is kept at equilibrium temperature with a local ther-

mostat. The time evolution of velocities and positions of particles
is determined by the Newton’s second law of motion. More de-
tails on the DPD method can be found elsewhere (1, 2).

The LD-RBC model employs colloidal particles in RBC con-
struction. To simulate colloidal particles with rotational degrees
of freedom by single DPD particles, we use a new formulation of
DPD (3), in which the forces acting on a particle are explicitly
divided into two separate components: central and shear (non-
central) components. This modification allows us to redistribute
and hence balance the forces acting on a single particle to obtain
the correct hydrodynamics. The resulting method was shown to
yield the quantitatively correct hydrodynamic forces and torques
on a single DPD particle (3), and thereby produce the correct
hydrodynamics for colloidal particles (4). We refer the reader
to refs. 3 and 4 for more details.

MS-RBCModel.The average equilibrium shape of an RBC is bicon-
cave as measured experimentally (5) and is represented by
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where D0 ¼ 7.82 μm is the average diameter, a0 ¼ 0.0518,
a1 ¼ 2.0026, and a2 ¼ −4.491. The surface area and volume of
this RBC are equal to 135 μm2 and 94 μm3, respectively. In the
simulations, the RBC membrane is represented by a set of points
fxig, i ∈ 1…Nv that are the vertices of a two-dimensional trian-
gulated network on the RBC surface described by Eq. S4 and
shown in Fig. S2. The potential energy of the system is defined
as follows:

V ðfxigÞ ¼ V in-plane þ V bending þ V area þ V volume; [S5]

which includes the in-plane elastic energy V in-plane (springs), the
bending energy V bending, and the area and volume conservation
constraints V area and V volume. The spring forces in the membrane
model mimic the elastic energy of the spectrin network, and they
are a combination of conservative elastic forces, which may be
expressed in terms of the energy potential V in-plane, and dissipa-
tive forces, which mimic viscous dissipation within the membrane.
The bending energy represents the bending resistance of the lipid
bilayer, whereas the area and volume energies enforce area in-
compressibility of the lipid bilayer and incompressibility of the
inner cytosol, respectively. Detailed description of these poten-
tials and membrane dissipative forces can be found in refs. 6–8.

Macroscopic elastic properties (shear, area compression, and
Young’s moduli) of modeled RBCs, as well as membrane viscos-
ity, are analytically derived through a linear analysis of the regular
hexagonal network (6, 7) resulting in a relationship between these
macroscopic RBC properties and the network and model para-
meters. Thus, no parameter adjustment is performed.

RBCs are suspended in a solvent, which is represented by a col-
lection of interacting DPD particles. To impose no-slip boundary
conditions at the membrane, the DPD pairwise forces between
fluid particles and membrane vertices are properly set; see refs. 7
and 8 for more details.

MS-RBC Aggregation Interactions. For blood, the attractive cell–cell
interactions are crucial for simulation of aggregation into rou-
leaux. These forces are approximated phenomenologically with
the Morse potential given by
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UMðrÞ ¼ De½e2βðr0−rÞ − 2eβðr0−rÞ�; [S6]

where r is the separation distance, r0 is the zero force distance, De
is the well depth of the potential, and β characterizes the inter-
action range. For the MS-RBC model, the Morse potential inter-
actions are implemented between every two vertices of separate
RBCs if they are within a defined potential cutoff radius rd as
shown in Fig. S3. The Morse interactions consist of a short-range
repulsive force when r < r0 and of a long-range attractive force
for r > r0. However, such repulsive interactions cannot prevent
two RBCs from an overlap. To guarantee no overlap among
RBCs, we employ a short-range Lennard–Jones potential and
specular reflections of RBC vertices on membranes of other
RBCs. The Lennard–Jones potential is defined as

ULJðrÞ ¼ 4ϵ

��
σLJ
r

�
12

−
�
σLJ
r

�
6
�
; [S7]

where ϵ and σLJ are energy and length characteristic parameters,
respectively. These interactions are repulsive and vanish beyond
r > 21∕6σLJ. In addition, specular reflections of RBC vertices on
surfaces of other RBCs are necessary due to coarseness of the
triangular network that represents the RBC membrane.

LD-RBC Model. The LD-RBC is modeled as a ring of 10 overlap-
ping colloidal particles connected by springs (9). These colloids
are single DPD particles whose repulsive point-force potentials
define a hard surface which guarantees no overlap between cells.
The radius of colloidal particles is equal to the radius of the ring
of centers, and hence the configuration of the RBC is approxi-
mately a closed torus, as shown in Fig. S4. In addition to the
springs interconnecting cell particles, the LD-RBC has bending
resistance incorporated into the ring model between two conse-
cutive springs. The model parameters are fitted through matching
axial and transverse RBC deformations (9) with respect to the
experimental data (10) for RBC stretching by optical tweezers.
Because the thickness of the LD-RBC model is constant, the var-
iations of the RBC volume and surface area were estimated un-
der stretching and were found to vary by less than 8% in the range
of all stretching forces (9). Therefore, the surface area and the
volume constraints are approximately satisfied for the LD-RBC.
The LD-RBC cell volume is approximately 158 μm3, which is
about 50% larger than MS-RBC volume. The LD-RBC has the
same radius, but is thicker than an MS-RBC. The effect of coarse
graining on stretching response was examined by varying the
number of particles (Nc) in the ring. Fig. S5 shows the RBC shape
evolution from equilibrium (0 pN force) to 100 pN stretching
force for different Nc. Fig. S5 shows that increasing the number
of ring particles results in both a smoother RBC surface (9) and
improved agreement with the experimental stretching data (10).
For Nc ¼ 10, the fit to the data is excellent, and hence 10-particle
rings were employed for all simulations. This representation is the
accurate minimalistic model that we employed in our studies.

LD-RBC Aggregation Model. Here, we also employ the Morse po-
tential given in Eq. S6 to model the total intercellular attractive
interactions between center of mass of different LD-RBCs. Thus,
r is calculated based on the center of mass of RBCs—i.e., r is
equal to the distance between the center of mass of two RBCs
minus the thickness of RBC. We chose r0 to be 200 nm because
it is reported to be in nanometer scale (11–13).

We also calculate the normal vector of each RBC ( ~nc), which
is used to determine if the aggregation occurs between two
RBCs according to the angles formed by the normal vectors of
these RBCs with their center line. The RBC normal vector is
defined as

~nc ¼ ∑ ~vk × ~vkþ1

Nc
; ~vk ¼ xk − xc; [S8]

where xk is the position of the kth particle in each RBC and xc is
the position of the center of mass. The center line ~vcij of two
RBCs (cell i and cell j) is defined as xci − xcj. The angle formed
by the normal vector of one cell with the center line is determined
by their dot product di ¼ ð ~nci · ~vcijÞ. The aggregation interactions
between two LD-RBCs are in effect only if di > dc and dj > dc,
where dc is the critical value chosen to be cosðπ∕4Þ. Thus, the
critical angle (θc) to turn on/off the aggregation interactions is
π∕4. This value is found to be suitable to induce rouleaux forma-
tion, but exclude the disordered aggregation. The proposed
aggregation algorithm can be further illustrated by a sketch in
Fig. S6, where the aggregation between two neighboring RBCs
is decided to be on/off according to their relative orientation.

Scaling of Model and Physical Units. The dimensionless constants
and variables in the DPD model must be scaled with physical
units. The superscript M denotes that a quantity is in “model”
units, while P identifies physical units (SI units). We define
the length scale as follows:

rM ¼ DP
0

DM
0

m; [S9]

where rM is the model unit of length, D0 is the cell diameter, and
m stands for meters. The energy per unit mass (kBT) and the
force unit (N denotes Newton) scales are given by

ðkBTÞM ¼ YP

YM

�
DP

0

DM
0

�
2

ðkBTÞP; NM ¼ YP

YM

DP
0

DM
0

NP; [S10]

where Y is the membrane Young’s modulus. The time scale is
defined as

τ ¼ DP
0

DM
0

ηP

ηM
YM

YP s; [S11]

where η is a characteristic viscosity (e.g., solvent or membrane).

Simulation Setup and Parameters. Here, we present details of the
simulation setup and parameters. The model units are chosen to
be rM ¼ 1, τ ¼ 1, and ðkBTÞM ¼ 1.

MS-RBC: Viscosity predictions. RBC suspension was subjected to
linear shear flow with periodic Lees–Edwards boundary condi-
tions (14). The computational domain had the size of 45.0×
32.0 × 27.222 rM , where 168 RBCs and 117,599 solvent particles
were placed. RBCs were represented by 500 DPD particles form-
ing a triangulated network on the surface defined in Eq. S4. The
RBC diameter and the membrane Young’s modulus were D0 ¼
8.06 rM and Y 0 ¼ 415.5 ðkBTÞM∕ðrMÞ2, respectively, correspond-
ing to D0 ¼ 7.82 μm and Y 0 ¼ 18.9 μN∕m in physical units. The
membrane shear modulus was μ0 ¼ 106 ðkBTÞM∕ðrMÞ2.

We employed the stress-free model (6, 7), which eliminates
local membrane artifacts (stresses) due to the membrane trian-
gulation. Thus, each spring assumed its own equilibrium length
li0, i ¼ 1…Ns, which was set to the edge lengths after the RBC
shape triangulation. We calculated spring parameters individually
for each spring using the given parameters μ0 and li0 (7). The area
and volume constraints coefficients were set to ka ¼ 4;900,
kd ¼ 100, and kv ¼ 5;000 (the notations are the same as in ref. 7).
The bending rigidity kc was set to 3 × 10−19 J, which is equal to
approximately 70 kBT at physiological temperature T ¼ 37 °C.
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The membrane viscosity was set to be 12η0, where η0 is the sus-
pending fluid viscosity.

Interactions between different RBCs included the short-range
repulsive Lennard–Jones potential defined in Eq. 7. The corre-
sponding potential parameters were set to ϵ ¼ 1.0 ðkBTÞM and
σLJ ¼ 0.3 rM . These repulsive interactions result in a thin layer
next to an RBC membrane that cannot be accessed by other cells.
This layer can be interpreted as a slight increase of the RBC
volume. Therefore, the RBC volume was assumed to be slightly
larger than that of the triangulated network (V 0 ¼ 92.45 ðrMÞ3)
due to the repulsive RBC–RBC interactions. The effective RBC
volume was estimated from an analysis of the distance between
surfaces of several RBCs in equilibrium and was equal to
V 0 ¼ 105 ðrMÞ3. The cell volume fraction or hematocrit was cal-
culated as follows:

H ¼ NcV 0

V t
; [12]

where Nc is the number of RBCs in the volume V t.
RBC aggregation interactions were mediated by the Morse

potential (Eq. S6). The Morse potential parameters were set
toDe ¼ 0.3 ðkBTÞM , r0 ¼ 0.3 rM , β ¼ 1.5 ðrMÞ−1, and rd ¼ 1.1 rM .
The choice of r0 was correlated with the Lennard–Jones charac-
teristic length σLJ ¼ 0.3 rM . Other aggregation parameters were
calibrated for a single point of the viscosity-shear-rate curve,
while all other simulations were performed for the same set of
parameters.

RBCs were suspended in a solvent simulated by a collection
of free DPD particles which correspond to small fluid volumes
of blood plasma. Three fluids with different viscosities were em-
ployed in simulations: (i) η0 ¼ 8.1; (ii) η0 ¼ 26.3; and (iii)
η0 ¼ 126.0, where η0 is given in units ðkBTÞMτ∕ðrMÞ3. Different
viscosities allowed us to simulate different ranges of shear rates
in physical units because they affect the timescale defined in
Scaling of model and physical units. For example, a fixed shear
rate in simulations in model units corresponds to distinct shear
rates in physical units if different fluid viscosities are used.
Table S1 presents the DPD interactions between different parti-
cle types [solvent (S) and RBC vertices (V)] (1, 2). The energy
unit in simulations was set to 0.1 ðkBTÞM which was calculated
according to the energy scale defined in Scaling of model and
physical units. The number density of the suspending fluid was
n ¼ 3. Note that the membrane viscosity also had to be changed
with respect to η0 and was always equal to 12η0. The dissipative
force coefficient γ for the S − V interactions defines RBC-solvent
boundary conditions. In simulations, a single solvent for the blood
plasma and cytosol was used. This simplification allowed us to
substantially reduce the computational cost and to be able to cal-
culate blood viscosity over five orders of magnitude in shear rates.

To cover a wide range of shear rates, several viscosities were
required. Limitations of the DPD method do not allow us to
simulate high shear rates, whereas at very low shear rates, simu-
lation results obtained by statistical averaging contain relatively
larger errors. The maximum shear rate (_γ) is limited by the local
Reynolds number defined as

Re ¼ n_γD2
0

η0
; [S13]

where n is the fluid’s density. Table S2 shows the simulated flow
regimes and the corresponding shear rate ranges in physical units.
The Re number in all simulations remained below 0.5. The
corresponding shear rates in physical units were calculated using
the value of plasma viscosity η0 ¼ 0.0012 Pa at physiological tem-
perature T ¼ 37 °C.

MS-RBC: Maximum RBC aggregation force. The maximum aggrega-
tion force between two RBCs was computed in simulations with
the aggregation parameters described above. The first (lower)
RBC was adhered to a wall, which was simulated by holding
stationary 100 vertices at the RBC bottom. The other (upper)
RBC was placed on top of the adhered RBC and was allowed to
aggregate in equilibrium simulation. Then, the force was applied to
the upper RBC in order to separate them (see Movies S4 and S5).

Several cases of the separation of two RBCs were considered.
In the first case (Movie S4), the upper RBC was pulled up in
the normal direction, where the force was applied to 200 RBC
vertices on the RBC top. This setup corresponds to a uniform
separation, which was characterized by a nearly homogeneous
and full separation of the two RBC surfaces in contact. The max-
imum force needed to break up the two aggregated RBCs in this
case was approximately 7 pN. In the second case (Movie S5), the
upper RBC was pulled up in the normal direction through 50
RBC vertices on the RBC top. Such disaggregation of two RBCs
resembled peeling off the upper cell of the other RBC with the
maximum force required for disaggregation to be approximately
3 pN. Finally, in the third setup, the upper RBC was pulled along
the tangential direction with the force applied to 50–150 RBC
vertices on the RBC side. Such separation of two RBCs can be
described as sliding of the upper cell on the lower RBC and re-
quired the force of about 1.5–3 pN.

To compute the disaggregation force in shear flow (Movie S6),
we used the same simulation setup. A fluid was confined between
two parallel plates, while the lower RBC was attached to the low-
er plate, and the upper plate was moving with constant velocity.
We found that the shear stress required for the disaggregation
of RBCs is equal to approximately 0.02 Pa. The shear stress was
defined as _γη0, where _γ is the imposed shear rate.

LD-RBC: Viscosity predictions. The DPD interactions among differ-
ent particle types [solvent (S) and cell (C) particles] are listed in
Table s3; see also ref. 9. Random force coefficients σij for different
interactions were obtained according to σij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTγij

p
with the

energy unit 0.1 ðkBTÞM . The number densities of solvent particles
was set to be nS ¼ 3.0. The intracell spring and bending parameters
were set to Lmax ¼ 1.3 rM , λp ¼ 0.0005 rM , and kb ¼ 50 ðkBTÞM ;
see ref. 9 for details. The Morse potential parameters were chosen
as De ¼ 500 ðkBTÞM , β ¼ 3.0 ðrMÞ−1, and r0 ¼ 0.1 rM .

At the first glance, the Morse potential parameters used in the
MS-RBC and LD-RBC models seem to be different, so here we
provide a clarification. The RBC diameter was equal to
D0 ¼ 8.06 rM and D0 ¼ 4 rM for the MS-RBC and LD-RBC
models, respectively. Therefore, one length unit in RBC models
corresponded to approximately 1 and 2 μm in physical units for
MS-RBC and LD-RBC, respectively (see Scaling of model and
physical units). Hence, we obtain that β ¼ 1.5 ðrMÞ−1 in MS-RBC
and β ¼ 3.0 ðrMÞ−1 in LD-RBC correspond to the same value of
β ¼ 1.5 μm−1 in physical units. Analogously, r0 ¼ 0.3 rM in MS-
RBC and r0 ¼ 0.1 rM in LD-RBC correspond to 0.3 and 0.2 μm,
respectively; the value of r0 does not have a strong effect on the
Morse potential values. Finally, the remaining Morse potential
parameter De seems to be very different for both models. How-
ever, in LD-RBC, De ¼ 500 ðkBTÞM corresponds to the strength
of aggregation interactions between two RBCs, because the
aggregation force acts between two RBC centers of mass. In
MS-RBC, De ¼ 0.3 ðkBTÞM corresponds to local vertex–vertex
interactions of two RBCs. Typically, 100–200 vertices of one RBC
apply aggregation forces on the vertices of the other RBC, where
each vertex of the former RBC interacts with 8–12 vertices of
the latter RBC. Thus, the strength of aggregation interactions
between two RBCs in MS-RBC can be estimated as
De × 150 × 10 ¼ 450 ðkBTÞM , which is close to the corresponding
value of the LD-RBC model.

Fedosov et al. www.pnas.org/cgi/doi/10.1073/pnas.1101210108 3 of 8

http://www.pnas.org/cgi/doi/10.1073/pnas.1101210108


1. PJ Hoogerbrugge, JMVA Koelman (1992) Simulating microscopic hydrodynamic
phenomena with dissipative particle dynamics. Europhy Lett 19:155–160.

2. RD Groot, PB Warren (1997) Dissipative particle dynamics: Bridging the gap between
atomistic and mesoscopic simulation. J Chem Phys 107:4423–4435.

3. W Pan, IV Pivkin, GE Karniadakis (2008) Single-particle hydrodynamics in dpd: A new
formulation. Europhys Lett 84:10012.

4. W Pan, B Caswell, GE Karniadakis (2010) Rheology, microstructure and migration in
Brownian colloidal suspensions. Langmuir 26:133–142.

5. EA Evans, R Skalak (1980) Mechanics and Thermodynamics of Biomembranes (CRC,
Boca Raton, FL).

6. DA Fedosov, B Caswell, GE Karniadakis (2010) Systematic coarse-graining of spectrin-
level red blood cell models. Comput Methods Appl Mech Eng 199:1937–1948.

7. DA Fedosov, B Caswell, GE Karniadakis (2010) A multiscale red blood cell model with
accurate mechanics, rheology, and dynamics. Biophys J 98:2215–2225.

8. DA Fedosov (2010) Multiscale modeling of blood flow and soft matter. PhD thesis,
Brown University, Providence, RI.

9. W Pan, B Caswell, GE Karniadakis (2010) A low-dimensional model for the red blood
cell. Soft Matter 6:4366–4376.

10. S Suresh, et al. (2005) Connections between single-cell biomechanics and human
disease states: Gastrointestinal cancer and malaria. Acta Biomater 1:15–30.

11. S Chien, K.-M Jan (1973) Ultrastructural basis of themechanism of rouleaux formation.
Microvasc Res 5:155–166.

12. B Neu, HJ Meiselman (2002) Depletion-mediated red blood cell aggregation in
polymer solutions. Biophys J 83:2482–2490.

13. Y Liu, WK Liu (2006) Rheology of red blood cell aggregation by computer simulation.
J Comput Phys 220:139–154.

14. AW Lees, SF Edwards (1972) The computer study of transport processes under extreme
conditions. J Phys C Solid State Phys 5:1921–1928.

0 1 2 3 4 5
0.6

0.7

0.8

0.9

1

1.1

q (µm−1)

S
(q

)

0.045 s−1 (no aggregation)

1.42 s−1 (no aggregation)

45 s−1 (no aggregation)

1424 s−1 (no aggregation)

0.045 s−1 (aggregation)

1.42 s−1 (aggregation)

Fig. S1. Isotropic structure factor SðqÞ for different shear rates with and without aggregation.

Fig. S2. MS-RBC membrane model with Nv ¼ 100, 500, and 3,000 from left to right, respectively.
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Fig. S3. MS-RBC: Aggregation interactions for the MS-RBC model.

Fig. S4. LD-RBC: A sketch of the low-dimensional closed-torus-like RBC model.

Fig. S5. LD-RBC shape evolution at different Nc (number of particles in LD-RBC model) and stretching forces.
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Fig. S6. Schematic of the aggregation algorithm. Here, the two neighboring RBCs (1 and 2) are to aggregate or not according to that the angles, θ1 and θ2, are
smaller or greater than π∕4.

Movie S1. Simulation of MS-RBCs under shear flow at H ¼ 0.1. Low shear rate of _γ ¼ 0.04 s−1 results in a formation of relatively long rouleaux structures. Ten
times the normal movie speed.

Movie S1 (MOV)

Movie S2. Simulation ofMS-RBCs under shear flow atH ¼ 0.1. Intermediate shear rate of _γ ¼ 0.4 s−1 results in a formation of medium size (3–8 RBCs) rouleaux
structures. Three times the normal movie speed.

Movie S2 (MOV)
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Movie S3. Simulation of MS-RBCs under shear flow at H ¼ 0.1. High shear rate of _γ ¼ 4.0 s−1 results in essentially no rouleaux structures. Normal movie
speed.

Movie S3 (MOV)

Movie S4. Simulation for computing themaximum force needed to break up two aggregated RBCs. The breakup pulling force in the normal direction is equal
to about 7 pN with a uniform RBC-RBC separation.

Movie S4 (MOV)

Movie S5. Simulation for computing themaximum force needed to break up two aggregated RBCs. The breakup pulling force in the normal direction is equal
to about 3 pN with a peeling breakup.

Movie S5 (MOV)
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Movie S6. Simulation for computing the disaggregation force in shear flow yields the value of shear stress required to break up a rouleaux structure with the
fluid shear stress value of about 0.02 Pa.

Movie S6 (MOV)

Table S1. MS-RBC: DPD simulation parameters

η0 Interaction a γ rc k (DPD envelope)

8.1 S–S 6.0 20.0 1.0 0.15
8.1 S–V 0.0 15.6 1.0 0.2
26.3 S–S 4.0 8.0 1.5 0.15
26.3 S–V 0.0 10.0 1.5 0.2
126.0 S–S 4.0 40.0 1.5 0.15
126.0 S–V 0.0 47.9 1.5 0.2

The parameters a and γ are the DPD conservative and dissipative force coefficients, rc is the cutoff radius, and k
is the exponent for the DPD envelope.

Table S2. MS-RBC: Simulated flow regimes and the corresponding shear rate ranges in physical
units

η0 _γ in DPD Re _γ, s−1

8.1 5 × 10−5 − 0.01 0.0012–0.24 0.014–3.2
26.3 0.003–0.056 0.022–0.41 3.1–58
126.0 0.017–0.25 0.026–0.4 83–1,200

Table S3. LD-RBC: Parameters of DPD interactions in simulations

Interaction Radial conservative force, linear γ∥ ¼ γ⊥ rc

S–S a ¼ 2.5 4.5 1.5
C–C (same cell) a ¼ 500 4.5 1.2

radial conservative force, exponential
C–C (different cell) a ¼ 2;500, b ¼ 20, rec ¼ 2.0 4.5 2.0
S–C a ¼ 2;500, b ¼ 20, rec ¼ 1.0 900 1.5

The parameters a, b, and rec are the linear and exponential DPD conservative forces; γ∥ and γ⊥ are the dissipative
force coefficients for central and shear force components, and rc is the cutoff radius.
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