
Supporting Information

Kalli et al. 10.1073/pnas.1104505108

Fig. S1. Simulations of the α IIb β 3 transmembrane (TM) helix dimer in complex with talin F2-F3. (A) Relative movements of the β , F2, and F3 domains in the $\alpha\beta$ -F2F3-CG simulation. The displacements of F2 (cyan), F3 (yellow), and the β TM helix (red) over the course of the simulation are shown as arrows mapped, the lengths of which represent the displacements. For this calculation, the α IIb TM coordinates were superimposed. (*B*) Initial configurations of the atomistic simulations of $\alpha\beta$ -F2F3c-AT ("closed"; see Table 1 for details and nomenclature used for simulations), $\alpha\beta$ -F2F3p-AT ("partial"), and $\alpha\beta$ -F2F3o-AT ("open"); these configurations were obtained by clustering the coarse-grained–molecular dynamics simulations and converting them to AT resolution. The color scheme is outer membrane clasp (magenta), inner membrane clasp (orange and green), F2 (cyan), F3 (yellow), β TM (red), and α IIb TM (blue).

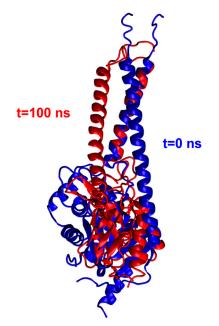
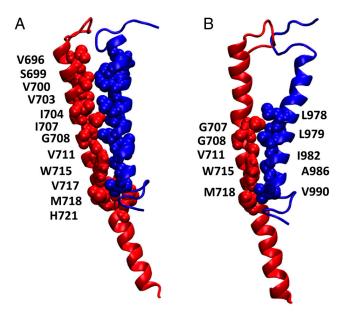



Fig. S2. Alignment of the α llb subunit from the initial F2-F3 + α llb β_3 model (blue) and at the end of the $\alpha\beta$ -F2F3o-AT (red) simulation, demonstrating the rotation of the β subunit perpendicular to the bilayer normal.

Fig. S3. Interface between the α IIb (blue) and the β 3 (red) TM domains at (A) the beginning and (B) the end of the $\alpha\beta$ -F2F3o-AT (open) simulation. The residues that make up the interaction surface in both subunits are shown in van der Waals format. The F2-F3 domains are omitted for clarity.

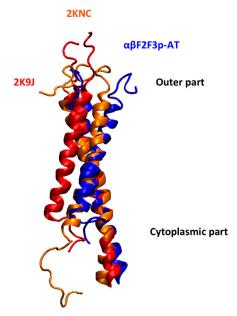


Fig. S4. Superposition of the β TM region (residues 697–726) from the $\alpha\beta$ -F2F3p-AT simulation (blue) with the α II β / β 3 (2KNC, orange) and the α II β / β 3 (2KSJ, red) structures. The alignment shows that the α II β / β 3 (2KNC) structure is similar to the partial disrupted state (the $\alpha\beta$ -F2F3p-AT simulation) and could therefore correspond to an intermediate state. The F2-F3 domain is omitted for clarity.

Other Supporting Information Files

Dataset S1 (TXT) Dataset S2 (TXT)