SUPPORTING INFORMATION

Site-specific characterization of threonine, serine and tyrosine glycosylations of amyloid precursor protein/amyloid β -peptides in human cerebrospinal fluid

Adnan Halim, Gunnar Brinkmalm, Ulla Rüetschi, Ann Westman-Brinkmalm, Erik Portelius, Henrik Zetterberg, Kaj Blennow, Göran Larson^{*} and Jonas Nilsson^{*}

goran.larson@clinchem.gu.se

jonas.nilsson@clinchem.gu.se

<u>Content</u> Fig. S1-S10 Table S1 and S2

Fig. S1. Amyloid Precursor Protein (APP) amino acid sequence containing the A β 1-X and APP/A β X-15 glycopeptides identified in human CSF. The positions of the α -, β - and γ -secretase cleavage sites are shown as arrowheads above the APP amino acid sequence. The APP/A β X-15 glycopeptides, all ending at Asn15, are shown above the sequence (blue series). The A β 1-X glycopeptides are shown below the sequence (green series). The glycosylation sites presented in this study are indicated as red S/T/Y residues. Longer A β 1-X peptides could not be detected in glycosylated form (black series).

Fig. S2. Immunopurified Aβ peptides and glycopeptides in human CSF. (**A**) Total-ion current chromatogram at 15.0-40.0 min of immunopurified Aβ peptides and glycopeptides. (**B**) Combined full mass spectra at 33.8-35.3 min showing Aβ1-40 and an apparent lack of Aβ1-40 glycopeptides. (**C**) Combined full mass spectra at 16.7-18.2 min showing Aβ1-15, SA₂-Aβ1-15 and SA₃-Aβ1-15, as well as additional Aβ peptides and glycopeptides. Minor ions^(a) and singly charged ions^(b) are of unknown origin. (**D**) Extracted ion chromatograms for the *m/z* values corresponding to [M + 4H]⁴⁺ of the Aβ1-15 peptide, Aβ1-15-Arg-¹³C¹⁵N standard (Aβ1-15*), SA₂-Aβ1-15, and SA₃-Aβ1-15. Parent ions are in the [M + *z*H]^{z+} form and charges are shown in superscript when *z* >1.

Fig. S3. CID MS² spectra of A β 1-X glycopeptides. (A) MS¹ (left) and CID MS² (right) of SA-A β 1-15. (B) CID MS² of SA₂-A β 4-15. (C) CID MS² of lactonized SA₃-A β 4-15. The presence of the peptide+Neu5AcHexNAc fragment ion at *m*/z 669.7 demonstrates that the disialosyl group was attached to the Hex rather than to the

HexNAc. (**D**) CID MS² spectrum of SA₃-A β 1-16. (**E**) CID MS² spectrum of lactonized SA₃-A β 1-16. (**F**) CID MS² spectrum of SA₂-A β -3-15. (**G**) MS² spectrum of SA-A β 1-17 (**H**) MS² spectrum of SA₂-A β 1-17. This MS² spectrum was acquired in the ion cyclotron resonance (ICR) mode. The isotopic resolution of the fragment ions is demonstrated in the insert. The sensitivity in ICR mode is lower than for the linear quadrupole ion trap (LQIT) mode, which was used for the collection of most CID MS² spectra. (**I**) - (**W**) Additional CID MS² spectra of A β 1-*X* glycopeptides. Ions are in the [M + *z*H]^{*z*+} form and the charges are shown in superscript when *z*>1. The mass accuracy was <5 ppm for all precursor ions and their monoisotopic *m/z* values and charge (4+) are shown. The annotated *m/z* values of fragment ions are those picked by the Xcalibur program. The Neu5Ac oxonium ion and its loss of H₂O are present at *m/z* 292 and 274, respectively. The O-AcNeu5Ac oxonium ion and its loss of H₂O are present at *m/z* 334 and 316, respectively. The lactonized Neu5AcNeu5Ac oxonium ion and its loss of one and two H₂O are present at *m/z* 565, 547 and 529, respectively.

Local calle

980

990

А

В

1000 1010 *m/z*

1030

1020

DAEFRHDSGY(947.3230)EVHHQ

c	c ⁺²				z	z ⁺²
		1	D	15		
204.0979	102.5526	2	Α	14	2643.0614	1322.0344
333.1405	167.0739	3	Е	13	2572.0243	1286.5158
480.2089	240.6081	4	F	12	2442.9817	1221.9945
636.3100	318.6586	5	R	11	2295.9133	1148.4603
773.3689	387.1881	6	н	10	2139.8122	1070.4097
888.3959	444.7016	7	D	9	2002.7533	1001.8803
975.4279	488.2176	8	s	8	1887.7263	944.3668
1032.4493	516.7283	9	G	7	1800.6943	900.8508
2142.8357	1071.9215	10	Y(947.3230)	6	1743.6729	872.3401
2271.8783	1136.4428	11	Е	5	633.2865	317.1469
2370.9467	1185.9770	12	v	4	504.2439	252.6256
2508.0056	1254.5064	13	н	3	405.1755	203.0914
2645.0645	1323.0359	14	н	2	268.1166	134.5619
		15	Q	1	131.0577	66.0325

DAEFRHDSGY(947.3230)EVHHQKL

....

c	c ⁺²				Z	$z^{\pm 2}$
		1	D	17		
204.0979	102.5526	2	Α	16	2884.2405	1442.6239
333.1405	167.0739	3	E	15	2813.2033	1407.1053
480.2089	240.6081	4	F	14	2684.1608	1342.5840
636.3100	318.6586	5	R	13	2537.0923	1269.0498
773.3689	387.1881	6	н	12	2380.9912	1190.9993
888.3959	444.7016	7	D	11	2243.9323	1122.4698
975.4279	488.2176	8	s	10	2128.9054	1064.9563
1032.4493	516.7283	9	G	9	2041.8733	1021.4403
2142.8357	1071.9215	10	Y(947.3230)	8	1984.8519	992.9296
2271.8783	1136.4428	11	Е	7	874.4656	437.7364
2370.9467	1185.9770	12	V	6	745.4230	373.2151
2508.0056	1254.5064	13	Н	5	646.3545	323.6809
2645.0645	1323.0359	14	н	4	509.2956	255.1515
2773.1231	1387.0652	15	Q	3	372.2367	186.6220
2901.2180	1451.1127	16	К	2	244.1781	122.5927
		17	L	1	116.0832	58.5452

DAEFRHDSGY(365.1322)EVHHQ

с	c ⁺²				z	z ⁺²
133.0608	67.0340	1	D	15		
204.0979	102.5526	2	Α	14	2060.8706	1030.9390
333.1405	167.0739	3	Е	13	1989.8335	995.4204
480.2089	240.6081	4	F	12	1860.7909	930.8991
636.3100	318.6586	5	R	11	1713.7225	857.3649
773.3689	387.1881	6	н	10	1557.6214	779.3143
888.3959	444.7016	7	D	9	1420.5625	710.7849
975.4279	488.2176	8	s	8	1305.5355	653.2714
1032.4493	516.7283	9	G	7	1218.5035	609.7554
1560.6449	780.8261	10	Y(365.1322)	6	1161.4821	581.2447
1689.6875	845.3474	11	Е	5	633.2865	317.1469
1788.7559	894.8816	12	v	4	504.2439	252.6256
1925.8148	963.4110	13	н	3	405.1755	203.0914
2062.8737	1031.9405	14	н	2	268.1166	134.5619
		15	Q	1	131.0577	66.0325

Е

DAEFRHDSGY(365.1322)EVHHQKL

c	c ⁺²				z	z ⁺²
133.0608	67.0340	1	D	17		
204.0979	102.5526	2	Α	16	2302.0497	1151.5285
333.1405	167.0739	3	E	15	2231.0125	1116.0099
480.2089	240.6081	4	F	14	2101.9700	1051.4886
636.3100	318.6586	5	R	13	1954.9015	977.9544
773.3689	387.1881	6	н	12	1798.8004	899.9039
888.3959	444.7016	7	D	11	1661.7415	831.3744
975.4279	488.2176	8	s	10	1546.7146	773.8609
1032.4493	516.7283	9	G	9	1459.6825	730.3449
1560.6449	780.8261	10	Y(365.1322)	8	1402.6611	701.8342
1689.6875	845.3474	11	E	7	874.4656	437.7364
1788.7559	894.8816	12	v	6	745.4230	373.2151
1925.8148	963.4110	13	н	5	646.3545	323.6809
2062.8737	1031.9405	14	н	4	509.2956	255.1515
2190.9323	1095.9698	15	Q	3	372.2367	186.6220
2319.0272	1160.0173	16	К	2	244.1781	122.5927
		17	L	1	116.0832	58.5452

DAEFRHDSGY(1238.4184)EVHHQ

c	c ⁺²				z	z ⁺²
		1	D	15		
204.0979	102.5526	2	Α	14	2934.1568	1467.5821
333.1405	167.0739	3	Е	13	2863.1197	1432.0635
480.2089	240.6081	4	F	12	2734.0771	1367.5422
636.3100	318.6586	5	R	11	2587.0087	1294.0080
773.3689	387.1881	6	Н	10	2430.9076	1215.9574
888.3959	444.7016	7	D	9	2293.8487	1147.4280
975.4279	488.2176	8	S	8	2178.8217	1089.9145
1032.4493	516.7283	9	G	7	2091.7897	1046.3985
2433.9311	1217.4692	10	Y(1238.4184)	6	2034.7683	1017.8878
2562.9737	1281.9905	11	Е	5	633.2865	317.1469
2662.0421	1331.5247	12	V	4	504.2439	252.6256
2799.1010	1400.0541	13	Н	3	405.1755	203.0914
2936.1599	1468.5836	14	Н	2	268.1166	134.5619
		15	Q	1	131.0577	66.0325

DAEFRHDSGY(1238.4184)EVHHQKL

c	c ⁺²				z	z ⁺²
		1	D	17		
204.0979	102.5526	2	Α	16	3175.3359	1588.1716
333.1405	167.0739	3	Е	15	3104.2987	1552.6530
480.2089	240.6081	4	F	14	2975.2562	1488.1317
636.3100	318.6586	5	R	13	2828.1877	1414.5975
773.3689	387.1881	6	н	12	2672.0866	1336.5470
888.3959	444.7016	7	D	11	2535.0277	1268.0175
975.4279	488.2176	8	s	10	2420.0008	1210.5040
1032.4493	516.7283	9	G	9	2332.9687	1166.9880
2433.9311	1217.4692	10	Y(1238.4184)	8	2275.9473	1138.4773
2562.9737	1281.9905	11	Е	7	874.4656	437.7364
2662.0421	1331.5247	12	V	6	745.4230	373.2151
2799.1010	1400.0541	13	н	5	646.3545	323.6809
2936.1599	1468.5836	14	н	4	509.2956	255.1515
3064.2185	1532.6129	15	Q	3	372.2367	186.6220
3192.3134	1596.6604	16	К	2	244.1781	122.5927
		17	L	1	116.0832	58.5452

Αβ 1-17

 $z_{8}^{*} z_{7}^{*} z_{6}^{*}$

 $Z_4 Z_3 Z_2$

DAEFRHDSGYEVHHQ

с	c ⁺²				z	z+2
		1	D	15		
204.0979	102.5526	2	А	14	1695.7384	848.3729
333.1405	167.0739	3	Е	13	1624.7013	812.8543
480.2089	240.6081	4	F	12	1495.6587	748.3330
636.3100	318.6586	5	R	11	1348.5903	674.7988
773.3689	387.1881	6	Н	10	1192.4892	596.7482
888.3959	444.7016	7	D	9	1055.4303	528.2188
975.4279	488.2176	8	\mathbf{s}	8	940.4033	470.7053
1032.4493	516.7283	9	G	7	853.3713	427.1893
1195.5127	598.2600	10	Y	6	796.3499	398.6786
1324.5553	662.7813	11	Е	5	633.2865	317.1469
1423.6237	712.3155	12	v	4	504.2439	252.6256
1560.6826	780.8449	13	Н	3	405.1755	203.0914
1697.7415	849.3744	14	н	2	268.1166	134.5619
		15	Q	1	131.0577	66.0325

FRHDSGY(947.3230)EVHHQKL

c	c ⁺²				z	z ⁺²
		1	F	14		
321.2034	161.1053	2	R	13	2537.0923	1269.0498
458.2623	229.6348	3	н	12	2380.9912	1190.9993
573.2892	287.1482	4	D	11	2243.9323	1122.4698
660.3212	330.6643	5	s	10	2128.9054	1064.9563
717.3427	359.1750	6	G	9	2041.8733	1021.4403
1827.7290	914.3682	7	Y(947.3230)	8	1984.8519	992.9296
1956.7716	978.8894	8	Е	7	874.4656	437.7364
2055.8400	1028.4237	9	V	6	745.4230	373.2151
2192.8989	1096.9531	10	н	5	646.3545	323.6809
2329.9579	1165.4826	11	н	4	509.2956	255.1515
2458.0164	1229.5119	12	Q	3	372.2367	186.6220
2586.1114	1293.5593	13	К	2	244.1781	122.5927
		14	\mathbf{L}	1	116.0832	58.5452

VKMDAEFRHDSGY(947.3230)EVHHQ

c	c ⁺²				z	z ⁺²
		1	v	18		
245.1972	123.1022	2	к	17	3017.2238	1509.1155
376.2377	188.6225	3	М	16	2889.1289	1445.0681
491.2646	246.1360	4	D	15	2758.0884	1379.5478
562.3017	281.6545	5	Α	14	2643.0614	1322.0344
691.3443	346.1758	6	Е	13	2572.0243	1286.5158
838.4128	419.7100	7	F	12	2442.9817	1221.9945
994.5139	497.7606	8	R	11	2295.9133	1148.4603
1131.5728	566.2900	9	н	10	2139.8122	1070.4097
1246.5997	623.8035	10	D	9	2002.7533	1001.8803
1333.6317	667.3195	11	s	8	1887.7263	944.3668
1390.6532	695.8302	12	G	7	1800.6943	900.8508
2501.0395	1251.0234	13	Y(947.3230)	6	1743.6729	872.3401
2630.0821	1315.5447	14	Е	5	633.2865	317.1469
2729.1505	1365.0789	15	v	4	504.2439	252.6256
2866.2095	1433.6084	16	н	3	405.1755	203.0914
3003.2684	1502.1378	17	н	2	268.1166	134.5619
		18	Q	1	131.0577	66.0325

m/z

DAEFRHDSGY(1238.4184)EVHHQKLVF

c	c ⁺²				z	z ⁺²
		1	D	19		
204.0979	102.5526	2	Α	18	3421.4727	1711.2400
333.1405	167.0739	3	Е	17	3350.4356	1675.7214
480.2089	240.6081	4	F	16	3221.3930	1611.2001
636.3100	318.6586	5	R	15	3074.3246	1537.6659
773.3689	387.1881	6	н	14	2918.2235	1459.6154
888.3959	444.7016	7	D	13	2781.1645	1391.0859
975.4279	488.2176	8	s	12	2666.1376	1333.5724
1032.4493	516.7283	9	G	11	2579.1056	1290.0564
2433.9311	1217.4692	10	Y(1238.4184)	10	2522.0841	1261.5457
2562.9737	1281.9905	11	E	9	1120.6024	560.8048
2662.0421	1331.5247	12	v	8	991.5598	496.2835
2799.1010	1400.0541	13	н	7	892.4914	446.7493
2936.1599	1468.5836	14	н	6	755.4325	378.2199
3064.2185	1532.6129	15	Q	5	618.3735	309.6904
3192.3134	1596.6604	16	К	4	490.3150	245.6611
3305.3975	1653.2024	17	L	3	362.2200	181.6136
3404.4659	1702.7366	18	v	2	249.1359	125.0716
		19	F	1	150.0675	75.5374

DAEFRHDSGYEVHHQKLVF

c	c ⁺²				z	z ⁺²
		1	D	19		
204.0979	102.5526	2	А	18	2183.0543	1092.0308
333.1405	167.0739	3	Е	17	2112.0172	1056.5122
480.2089	240.6081	4	F	16	1982.9746	991.9909
636.3100	318.6586	5	R	15	1835.9062	918.4567
773.3689	387.1881	6	Н	14	1679.8051	840.4062
888.3959	444.7016	7	D	13	1542.7461	771.8767
975.4279	488.2176	8	\mathbf{s}	12	1427.7192	714.3632
1032.4493	516.7283	9	G	11	1340.6872	670.8472
1195.5127	598.2600	10	Y	10	1283.6657	642.3365
1324.5553	662.7813	11	Е	9	1120.6024	560.8048
1423.6237	712.3155	12	v	8	991.5598	496.2835
1560.6826	780.8449	13	Н	7	892.4914	446.7493
1697.7415	849.3744	14	Н	6	755.4325	378.2199
1825.8001	913.4037	15	Q	5	618.3735	309.6904
1953.8950	977.4512	16	K	4	490.3150	245.6611
2066.9791	1033.9932	17	L	3	362.2200	181.6136
2166.0475	1083.5274	18	v	2	249.1359	125.0716
		19	F	1	150.0675	75.5374

Fig. S4. ECD MS² spectra of Aβ1-X glycopeptides (A)-(D) Fully *m/z* annotated ECD spectra and lists of *c*- and *z*-ions accompanying **Fig. 2** of the main text. (**E**) ECD MS² spectrum of SA₃-Aβ1-15. The presence of a glycosylated *z*6 peak is shown in the insert. (**F**) ECD MS² spectrum of SA₃-Aβ1-17. The presence of a glycosylated *z*8 peak is shown in the expansion. (**G**) ECD MS² spectrum of Aβ1-15 peptide. (**H**) ECD MS² spectrum of SA₂-Aβ4-17. The presence of glycosylated *z*8 and *z*9 peaks is shown in the expansion (**I**) ECD MS² spectrum of SA₂-Aβ-3-15. (**J**) ECD MS² spectrum of SA₃-Aβ1-19. (**K**) ECD MS² spectrum of Aβ1-19 peptide. The lists of *c*- and *z*-series of peptide backbone fragments were prepared by the use of the MS product utility at the Protein Prospector homepage (http://prospector.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msproduct). The identified fragment ions are annotated in the spectra, and shown in relation to the peptide sequences. The molecular ion and its charged reduced forms (*M*) are present in the spectra. *M*-*Ac*, loss of acetyl from *M*. The peaks were expanded and the *M* peaks were cropped.

Fig. S5. CID MS² of additional APP/A β X-15 glycopeptides. (A) MS¹ and CID MS² of Neu5AcHex(Neu5Ac)HexNAc APP/A β -45-15 showing the diagnostic *y*57 peptide fragment peaks. (B) MS¹ and CID MS² of (Neu5AcHexHexNAc)₃ APP/A β -51-15. The same glycopeptide possessing different charges, are fragmented here (z = 7) and in Fig. 4C of the main text (z = 8). The diagnostic *b*9 and *y*57 ion peaks were only visible for z = 8, and were generally more pronounced at the higher charge state of the APP/A β X-15 glycopeptides. (C) - (L) CID MS² spectra of additional APP/A β X-15 glycopeptides. *The MS¹ peaks for the monoisotopic *m/z* value were not visible and the measured *m/z* values for the second isotopes are given instead.

Fig. S6. CID and ECD MS² of Neu5AcHex(Neu5Ac)HexNAc-APP/A β -25-15 (A) MS¹ (left) and CID MS² (right) and (B) ECD MS² spectrum of Neu5AcHex(Neu5Ac)HexNAc - APP/A β -25-15. CID MS² was acquired in ICR mode. Isotopic distributions of fragment ions are demonstrated in the inserts supporting the evidence of significant fragments. Selected *c*- and *z*-fragments are annotated and shown in relation to the peptide sequence. The attachment site for the glycan was either Thr(-21) or Thr(-20).

Fig. S7. Identification of Thr (-21, -20 and -13) glycosylation sites. (A) ECD spectrum of the -23-(-10) glycopeptide with three HexHexNAc glycans at Thr (-21, -20 and -13). The amino acid numbering is according to the A β sequence. Ser(-16) was excluded as a glycosylation site in this glycopeptide. Sialic acids were originally present on the glycopeptides but were removed as a part of the enrichment protocol. (B) CID MS² spectrum of the same -23-(-10) glycopeptide as in (A). (C) CID MS² of the -23-(-10) glycopeptide with two HexHexNAc glycans. (D) CID MS² of the -23-(-10) glycopeptide with one HexHexNAc glycan. The peptide ion peak in the MS² spectra (*m*/*z* 708.0) gave peptide fragmentation in the MS³ spectrum, which was used to determine the peptide identity by Mascot database searching (See Table S2).

Fig. S8. Identification of Thr (–39) and Ser(–5) / Thr(–9) glycosylation sites. (A) CID MS² of the –9-5 glycopeptide with one HexHexNAc glycan (left). The glycosylation site was either Ser(–5) or Thr(–9). The deglycosylated peptide ion (*m/z* 850.5) present in the MS² spectrum gave peptide fragmentation in the MS³ spectrum (right), which was subjected to Mascot database searching to determine the glycopeptide identity (**see Table S2**). ^{*}The methionine was oxidized (+16 Da) resulting in a characteristic neutral loss of 64 Da from the oxidized Met in the CID MS³ spectrum (*M-64*). (**B**) CID MS² of the –9-(–2) glycopeptide carrying one HexHexNAc glycan on either Ser(–5) or Thr(–9). (**C**) CID MS² of the –44-(–29) glycopeptide carrying one HexHexNAc glycan. The presence of glycosylated *y*14 peptide fragments in the MS² spectrum pinpointed the glycosylation site to Thr(–39). The *y*14 fragments represent the same fragmentation site as for the prominent *y*57 fragment ions for the APP/Aβ*X*-15 glycopeptides (see **Fig. 4** and **Fig. S5**).

Fig. S10. Heat map showing the relative signal intensities of individual APP/A β X-15 peptides and glycopeptides for AD and non-AD patients. Data were normalized in the same way as in Fig. 3 of the main text (see also Fig. S9 and Table S1).

Table S1. Structures and relative intensities of 6E10 immunopurified APP/A β peptides and glycopeptides of human CSF samples. The glycosylated/unglycosylated spectral intensity ratios for A β peptides and glycopeptides from AD versus non-AD patients (nonAD) are shown.

	Calculated monoisotopic	MS ² data ^b	AD vs. C (mean C set to 1) ^c				Mean
Peptide/Glycopeptide ^a			Mean	Std dev.	Mean	Std dev.	intensity
	mass (Da)		nonAD	non-AD	AD	AD	$(\log_{10})^{\alpha}$
Αβ1-13	1560.6593	Y	1.0	0.2	0.7	0.2	5.3
Αβ1-14	1697.7182	Y	1.0	0.1	0.9	0.1	5.9
Αβ1-15	1825.7768	S4G	1.0	0.2	0.9	0.2	6.0
SaHHn-Aβ1-15	2482.0044	S3A	1.0	0.3	1.1	0.5	3.6
Sa ₂ HHn-Aβ1-15	2773.0999	F1A, F2A	1.0	0.1	1.4	0.1	5.1
LaSa ₂ SaHHn-Aβ1-15	3046.1847	F1D	1.0	0.2	1.9	0.1	4.4
Sa ₃ HHn-Aβ1-15	3064.1953	F1B, S4E	1.0	0.1	1.6	0.0	4.7
Ac-Sa ₃ HHn-Aβ1-15	3106.2058	F1C	1.0	0.3	2.3	0.3	4.0
Αβ1-16	1953.8718	Y	1.0	0.2	1.1	0.2	5.3
LaSa ₂ SaHHn-Aβ1-16	3174.2797	S3E		Below the	hreshold		<3.0
Sa ₃ HHn-Aβ1-16	3192.2902	S3D		Below the	hreshold		<3.0
Αβ1-17	2066.9559	Y	1.0	0.1	1.0	0.1	7.3
SaHHn-Aβ1-17	2723.1835	S3G	1.0	0.4	1.1	0.3	4.6
Sa ₂ HHn-Aβ1-17	3014.2789	F2B, S3H	1.0	0.1	1.2	0.1	5.8
LaSa ₂ SaHHn-Aβ1-17	3287.3637	S3K	1.0	0.2	1.6	0.1	4.5
Sa ₃ HHn-Aβ1-17	3305.3743	S3I, S4F	1.0	0.1	1.2	0.3	4.7
Ac-Sa ₃ HHn-Aβ1-17	3347.3849	S3J	1.0	0.2	1.5	0.1	4.1
Αβ1-18	2166.0243	Y	1.0	0.2	1.0	0.1	6.0
Sa ₂ HHn-Aβ1-18	3113.3473	S3O	1.0	0.1	1.1	0.1	4.4
LaSa ₂ SaHHn-Aβ1-18	3386.4321	S3R	1.0	0.3	2.5	0.5	4.1
Sa ₃ HHn-Aβ1-18	3404.4427	S3P	1.0	0.2	1.4	0.4	4.5
Ac-Sa ₃ HHn-Aβ1-18	3446.4533	S3Q	1.0	0.2	1.3	0.5	3.2
Αβ1-19	2313.0927	S4K	1.0	0.1	1.2	0.1	7.3
Sa ₂ HHn-Aβ1-19	3260.4157	S3S	1.0	0.1	1.4	0.2	5.3
LaSa ₂ SaHHn-Aβ1-19	3533.5006	S3V	1.0	0.4	2.5	0.6	5.2
Sa ₃ HHn-Aβ1-19	3551.5111	S3T, S4J	1.0	0.2	1.9	0.4	5.4
Ac-Sa ₃ HHn-Aβ1-19	3593.5217	S3U	1.0	0.2	1.4	0.3	4.2
Αβ1-20	2460.1611	Y	1.0	0.2	1.0	0.2	5.9
Sa ₂ HHn-Aβ1-20	3407.4841	S3W	1.0	0.5	0.8	0.4	3.9
Αβ1-28	3260.5275	Y	1.0	0.3	0.5	0.2	6.3
Αβ1-30	3388.5861	Y	1.0	0.1	1.1	0.1	6.7
Αβ1-33	3671.7757	Y	1.0	0.1	1.0	0.1	7.5
Αβ1-34	3784.8598	Y	1.0	0.1	0.8	0.1	7.6
Αβ1-37	4071.9901	Y	1.0	0.0	1.0	0.0	7.9
Αβ1-38	4129.0116	Y	1.0	0.0	1.0	0.0	8.6
Αβ1-39	4228.0800	Y	1.0	0.0	1.2	0.1	7.8
Αβ1-40	4327.1484	Y	1.0	0.0	1.0	0.0	8.8

A B1-42	4511 2696	V	1.0	0.2	0.5	0.1	6.6
Δβ/-15	1510 6702	ı N	1.0	0.2 0.3 0.1 Below threshold		<3.0	
	2457 9932	S3R	1.0	0.4	2.2	0.9	4.0
LaSa ₂ SaHHn-AB4-15	2731 0781	S3C	1.0	1.0 0.4 2.2 0.9 Below threshold		0.9	<3 0
ΔR4_17	1751 8/02	N	1.0	0.2	0.0	0.1	43
Sa ₂ HHn-Aβ4-17	2699 1722	S3L S4H	1.0	0.2	1.4	0.1	53
Sa ₂ HHn-A64-17	2990 2676	S3M	1.0	0.1	2.1	0.1	4.1
AB5-17	1604 7808	N	1.0	0.2	0.6	0.1	4 3
Sa ₂ HHn-A65-17	2552,1038	S3N	1.0	Below t	hreshold	0.1	<3.0
Αβ(-3-15)	2183 9812	N	1.0	0.4	0.4	0.2	3.6
Sa ₂ HHn-Aβ(-3-15)	3131.3043	S3F. S4I	1.0	0.1	1.1	0.2	4.4
Αβ(-4-15)	2313 0238	Y	1.0	0.2	0.7	0.1	5.2
Αβ(-5-15)	2400 0558	Y	1.0	0.1	1.0	0.1	5.5
Αβ(-11-15)	3113 4518	V	1.0	0.2	1.0	0.1	5.9
Δβ(-14-15)	3441 6264	V	1.0	0.2	1.0	0.1	5.5
Δβ(-21-15)	/007 0506	V	1.0	0.2	1.0	0.2	6.0
Αβ(-21-15)	4097.9300	I V	1.0	0.2	1.1	0.1	6.4
$A\beta(-22-15)$	4211.0347	I V	1.0	0.2	1.4	0.2	7.2
Ap(-25-15) SaHHn-Aβ(-25-15)	5105 4118	I N	1.0	0.1	1.0	0.1	6.2
SarHHn-AB(-25-15)	5486 5073	N \$6	1.0	0.1	1.0	0.2	6.8
(SaHHn)2-AB(-25-15)	6507 8671	50 F4B	1.0	0.3	0.7	0.3	5.8
(Summ); AB(-45-15)	6601 1445	V	1.0	0.2	1.3	0.2	7.0
Sa ₂ HHn-Aβ(-45-15)	7548 4676		1.0	0.2	0.9	0.2	6.6
Δβ(-51-15)	7286.4418	V	1.0	0.1	1.0	0.1	6.0
SaHHn-AB(-51-15)	7942 6694	S5C	1.0	0.2	0.9	0.1	7.1
Sa2HHn-Aβ(-51-15)	8233 7649	850 85D	1.0	0.1	0.9	0.3	6.4
(SaHHn) ₂ -Aβ(-51-15)	8598.8970	S5E	1.0	0.1	0.5	0.2	6.5
Sa ₂ HHnSaHHn-Aβ(–51-15)	8889.9925	N	1.0	0.4	1.0	0.5	6.0
(SaHHn) ₃ -Aβ(-51-15)	9255.1247	F4C, S5B	1.0	0.2	0.5	0.1	7.1
Sa ₂ HHn(SaHHn) ₂ -A β (-51-15)	9546.2201	S5F	1.0	0.2	0.7	0.0	6.7
(SaHHn) ₄ -Aβ(-51-15)	9911.3523	S5G	1.0	0.5	1.1	0.6	6.8
$Sa_2HHn(SaHHn)_3-A\beta(-51-15)$	10202.4477	Y	1.0	0.4	1.1	0.3	6.6
$(Sa_2HHn)_2(SaHHn)_2-A\beta(-51-15)$	10493.5431	Ν	1.0	0.3	0.8	0.2	6.0
(SaHHn) ₅ -Aβ(-51-15)	10567.5799	N	1.0	0.4	0.7	0.3	5.8
$Sa_2HHn(SaHHn)_4-A\beta(-51-15)$	10858.6753	Ν	1.0	0.3	0.6	0.1	5.3
Αβ(-57-15)	7967.7751	Y	1.0	0.1	1.0	0.1	7.2
SaHHn-Aβ(-57-15)	8624.0027	S5H	1.0	0.3	0.8	0.3	6.6
$Sa_2HHn-A\beta(-57-15)$	8915.0982	S5I	1.0	0.1	0.8	0.2	6.8
(SaHHn) ₂ -Aβ(-57-15)	9280.2303	Ν	1.0	0.3	0.9	0.2	6.4
Sa ₂ HHnSaHHn-A β (-57-15)	9571.3258	Ν	1.0	0.2	0.8	0.1	5.8
(SaHHn) ₃ -Aβ(-57-15)	9936.4580	F4D	1.0	0.1	0.7	0.1	6.9
Sa ₂ HHn(SaHHn) ₂ -Aβ(-57-15)	10227.5534	Ν	1.0	0.2	0.8	0.1	6.5
(SaHHn) ₄ -Aβ(-57-15)	10592.6856	S5J	1.0	0.3	0.6	0.2	6.9
$Sa_2HHn(SaHHn)_3-A\beta(-57-15)$	10883.7810	Ν	1.0	0.3	0.7	0.2	6.6
$(Sa_2HHn)_2(SaHHn)_2-A\beta(-57-15)$	11174.8764	N	1.0	0.5	0.5	0.3	5.6
$(SaHHn)_5$ -A $\beta(-57-15)$	11248.9132	Ν	1.0	0.2	75.7	40.0	6.2

$Sa_2HHn(SaHHn)_4-A\beta(-57-15)$	11540.0086	Ν	1.0	0.3	0.9	0.5	4.8
Αβ(-58-15)	8054.8072	Y	1.0	0.2	1.2	0.1	6.7
Αβ(-63-15)	8601.0510	Ν	1.0	0.1	1.0	0.1	6.4
SaHHn-Aβ(-63-15)	9257.2786	Ν	1.0	0.3	1.0	0.3	6.7
Sa ₂ HHn-Aβ(-63-15)	9548.3741	Ν	1.0	0.5	1.3	0.6	6.2
(SaHHn) ₂ -Aβ(-63-15)	9913.5062	Ν	1.0	0.6	36.2	17.5	6.3
$Sa_2HHnSaHHn-A\beta(-63-15)$	10204.6017	Ν	1.0	0.3	0.9	0.1	5.9
(SaHHn) ₃ -Aβ(-63-15)	10569.7339	S5K	1.0	0.1	0.7	0.1	7.0
$Sa_2HHn(SaHHn)_2-A\beta(-63-15)$	10860.8293	Ν	1.0	0.3	0.8	0.1	6.6
(SaHHn) ₄ -Aβ(-63-15)	11225.9615	S5L	1.0	0.3	0.5	0.1	7.0
$Sa_2HHn(SaHHn)_3-A\beta(-63-15)$	11517.0569	F4E	1.0	0.4	0.9	0.2	6.8
$(Sa_2HHn)_2(SaHHn)_2-A\beta(-63-15)$	11808.1523	Ν	1.0	0.3	1.0	0.4	6.1
(SaHHn) ₅ -Aβ(-63-15)	11882.1891	Ν	1.0	0.4	0.4	0.3	6.0
Sa ₂ HHn(SaHHn) ₄ -Aβ(-63-15)	12173.2845	Ν	1.0	0.3	0.8	0.2	5.7

^a Sa = Neu5Ac, H = Hex, Hn = HexNAc, LaSa₂ = two Neu5Ac linked with lactone formation, Ac = O-acetyl

^b $Y = CID MS^2$ data obtained but not shown in this publication; $N = MS^2$ data not obtained; $F\# = MS^2$ data obtained and shown in Fig. #; $S\# = MS^2$ data obtained and shown in Fig. S#

^c Values obtained as described in the *Materials and Methods* section. Below threshold
= no signal detected in the AD vs. non-AD study, but detected in other experiments.
^d log₁₀ values of mean peak intensity of the 13 spectra used in the quantitative AD vs.

non-AD

study. Signal threshold was subjectively set to $1000 (\log_{10} 1000 = 3)$. Peptides with \log_{10} peak intensity <3.0 in this set were thus below the detection threshold.

Table S2. Sequence and structures of APP/A β glycopeptides obtained after sialic acid capture-and-release of peptides immunopurified from CSF with the 6E10 antibody. CID MS² spectra of these glycopeptides are shown in **Figs. S7 and S8**.

Peptide	APP/Aβ region	Glycan	Mascot score	Threshold (p<0.05)
K.TEEISEVK.M	-9-(-2)	HexHexNAc	34	>25
K.TEEISEVKMDAEFR.H	-9 - 5	HexHexNAc	62	>21
R.GLTTRPGSGLTNIK.T	-23-(-10)	(HexHexNAc) ₃	-	-
R.GLTTRPGSGLTNIK.T	-23-(-10)	(HexHexNAc) ₂	19	>18
R.GLTTRPGSGLTNIK.T	-23-(-10)	HexHexNAc	39	>19
D.SVPANTENEVEPVDAR.P	-44-(-29)	HexHexNAc	43	>25